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Abstract. Soil moisture is an essential climate variable
(ECV) of major importance for land–atmosphere interac-
tions and global hydrology. An appropriate representation of
soil moisture dynamics in global climate models is therefore
important. Recently, a first multidecadal, observation-based
soil moisture dataset has become available that provides in-
formation on soil moisture dynamics from satellite obser-
vations (ECVSM, essential climate variable soil moisture).
The present study investigates the potential and limitations
of this new dataset for several applications in climate model
evaluation. We compare soil moisture data from satellite ob-
servations, reanalysis and simulations from a state-of-the-art
land surface model and analyze relationships between soil
moisture and precipitation anomalies in the different dataset.
Other potential applications like model parameter optimiza-
tion or model initialization are not investigated in the present
study. In a detailed regional study, we show that ECVSM is
capable to capture well the interannual and intraannual soil
moisture and precipitation dynamics in the Sahelian region.
Current deficits of the new dataset are critically discussed
and summarized at the end of the paper to provide guidance
for an appropriate usage of the ECVSM dataset for climate
studies.

1 Introduction

Soil moisture is an essential climate variable (ECV) that
has an impact on regional to global terrestrial water, en-
ergy and carbon fluxes. Soil moisture controls the partition-
ing of the available energy into latent and sensible heat flux
and conditions the amount of surface runoff. By controlling

evapotranspiration, it is linking the energy, water and carbon
fluxes (Koster et al., 2004; Seneviratne and Stöckli, 2008)
and has a direct feedback on precipitation (Taylor et al.,
2012a) as well as temperature (Miralles et al., 2012; Mueller
and Seneviratne, 2012) at the regional to global scale.

An appropriate knowledge of soil moisture conditions is
important for the initialization and quality of seasonal to
yearly climate predictions.Fischer et al.(2007) indicated
that the record breaking European heat wave in 2003 was en-
hanced by the large soil moisture anomalies that were caused
by a large precipitation deficit together with early vegeta-
tion green-up in the months preceding the extreme event.
Loew et al.(2009) showed that these soil moisture anomalies
were observable by remote sensing andMiralles et al.(2012)
started to use satellite soil moisture anomalies to explain tem-
perature extremes. All these studies indicate that due to its
long-term memory, soil moisture can be an important factor
for seasonal climate forecasts (Fischer et al., 2007).

Soil moisture shows a high variability from daily to in-
terannual timescales and is therefore difficult to measure.
Up to now, soil moisture observations are based on either in
situ measurements (Robock et al., 2000; Dorigo et al., 2011)
or satellite observations (Wagner et al., 1999; Njoku et al.,
2003; Loew et al., 2006; Owe et al., 2008; Kerr et al., 2010).
Several quasi-global soil moisture datasets have been devel-
oped during the last decade based on either active or pas-
sive microwave satellite observations from AMSR-E (Owe
et al., 2008; Njoku et al., 2003), ERS AMI, MetOp AS-
CAT (Bartalis et al., 2007), SMMR, SSM/I, WindSat (Li
et al., 2010; Parinussa et al., 2012) and SMOS (Kerr et al.,
2010; Mecklenburg et al., 2012). Even though, except for
SMOS, none of the used instruments has been specifically
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designed for soil moisture retrievals, the different products
have been proven to show good correspondence with in situ
observations over a large variety of environmental condi-
tions (Draper et al., 2009; Gruhier et al., 2010; Brocca et al.,
2011; Albergel et al., 2012; Dorigo et al., 2012b). They
demonstrated their usefulness for applications like hydrolog-
ical modeling (Beck et al., 2009; Brocca et al., 2012; Draper
et al., 2012; Tramblay et al., 2012), numerical weather
prediction (Drusch, 2007; Dharssi et al., 2011) or studies
of land–atmosphere interactions (Seneviratne et al., 2010;
Taylor et al., 2011, 2012a) as well as climate model eval-
uation and initialization (Schumann et al., 2009; Bisselink
et al., 2011).

Recently, the first multidecadal satellite-based global soil
moisture record (ECVSM) has become available (Liu et al.,
2012). The new ECVSM data product has been generated
by homogenizing different existing soil moisture products
within the framework of the ESA’s (European Space Agency)
Water Cycle Multi-Mission Observation Strategy (WAC-
MOS) project (Su et al., 2010).

The purpose of the present study is to evaluate potential
applications of this novel soil moisture data record for cli-
mate model evaluation applications based on the land com-
ponent of the Max Planck Institute for Meteorology Earth
System Model (MPI-ESM). The overarching objectives of
the analysis in this study are to

– evaluate the potential of using ECVSM satellite soil
moisture observations for climate model evaluation at
regional to global scales;

– analyze how ECVSM captures intra- and interannual
soil moisture variability; and

– analyze how ECVSM can be used to study and evalu-
ate the soil moisture and precipitation relationship and
dynamics in observations and models.

This paper is the first study that provides a comprehensive
analysis of potentials and limitations of the novel multi-
decadal soil moisture dataset for climate studies and climate
modeling applications. It compares soil moisture data from a
state-of-the-art land surface model, reanalysis as well as the
novel ECVSM satellite-based soil moisture observations.

2 Data and models

2.1 Soil moisture data

2.1.1 Multidecadal satellite soil moisture observations
(ECVSM)

The ECVSM product is the first ever multidecadal satellite-
based soil moisture product and is available for the time
period 1978–2010 on a daily basis and at a spatial resolu-
tion of 0.25◦. It has been generated by merging active and

passive microwave-based soil moisture products (Wagner
et al., 1999; Naeimi et al., 2009; Owe et al., 2008) from the
following satellite instruments: SMMR (November 1978–
August 1987), SSM/I (July 1987–2007), TMI (1998–2008),
AMSR-E (July 2002–December 2010), ERS-1/2 (July 1991–
May 2006), and ASCAT (2007–2010). The data harmoniza-
tion procedure is described inLiu et al. (2012) and is based
on a rescaling of the remote sensing soil moisture data using
the soil moisture statistics from the Noah land surface model
(Liu et al., 2011, 2012). A cumulative distribution function
(CDF) matching technique is employed for that purpose. The
CDF matching is applied on each grid cell individually and
rescales the satellite observed soil moisture to the Noah land
surface model statistics. As a consequence, the soil moisture
statistics of the ECVSM data product is similar to that of
the Noah land surface model. While this rescaling affects the
percentile distribution of the ECVSM product, the temporal
structures (e.g., autocorrelation, trends) are not changed by
this rescaling approach (Liu et al., 2012).

Dorigo et al.(2012b) provide a comprehensive validation
of ECVSM using 932 in situ observation sites from 29 differ-
ent observing networks (Dorigo et al., 2011, 2013). Despite
the large difficulties in validating coarse resolution satel-
lite soil moisture products with in situ point-like observa-
tions (Crow et al., 2012), Dorigo et al.(2012b) conclude that
the ECVSM product has an average unbiased RMSD (root
mean square deviation) of 0.05 [m3 m−3] on daily timescales
and mean correlation ofr = 0.5. Besides, it was shown that
trends in ECVSM largely agree with those in various reanal-
ysis products of precipitation, and vegetation vigor (Albergel
et al., 2012; Dorigo et al., 2012a).

The ECVSM dataset provides a multitude of quality flags
and only reliable soil moisture estimates are preserved in the
data product. Snow covered areas or frozen ground are typi-
cally masked as well as dense or heterogeneously vegetated
areas with high optical depth that are not expected to pro-
vide reliable soil moisture estimates (Loew, 2008; Parinussa
et al., 2011). A pre-processing of the ECVSM data product is
required to match it in space and time with the other datasets
used in the present study. Thus, the ECVSM soil moisture
data is regridded to the MPI-ESM T63 model grid (≈ 1.85◦).
A conservative remapping technique is used for that purpose,
which is implemented in the climate data operators (cdo,
https://code.zmaw.de/projects/cdo). Some data gaps were re-
moved by this procedure due to spatial interpolation.

2.1.2 MPI-ESM land surface model (JSBACH)

MPI-ESM couples processes in the atmosphere, ocean and
land surface through the exchange of momentum, water, en-
ergy and important trace gases such as carbon dioxide. It
has been widely used for comparative model calculations in
the context of the Coupled Model Intercomparison Project 5
(CMIP5) (Taylor et al., 2012b).
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The land surface component of MPI-ESM, JSBACH (Rad-
datz et al., 2007; Brovkin et al., 2009; Reick et al., 2013),
is implicitly coupled to the atmospheric component of MPI-
ESM, ECHAM6 (Stevens et al., 2013) and simulates all
relevant land surface water, energy and carbon fluxes. The
present study uses version 2.03 of JSBACH, which is com-
parable to the model version that was used for CMIP5 exper-
iments, but which includes a layered soil hydrology scheme
instead of a standard bucket scheme. In this version, the soil
moisture dynamics in the unsaturated zone are simulated us-
ing five discretized soil layers with a thickness of dz = (0.065,
0.254, 0.913, 2.902, 5.7) [m]. For the present study, the first
soil layer is used for comparison. A validation of global-scale
energy and water flux components of MPI-ESM CMIP5 sim-
ulations is given inHagemann et al.(2013) andBrovkin et al.
(2013).

JSBACH can be either forced by any kind of meteoro-
logical data (e.g., station measurements, reanalysis data) or
by coupling JSBACH directly to a global circulation model
(GCM), like ECHAM6. For the present study, we use JS-
BACH in an offline mode, thus not coupled to a GCM. The
model simulations were conducted for a 31 yr period (1979–
2009) using an offline forcing dataset. This allows for a more
realistic comparison of satellite soil moisture observations
with the model simulations as it minimizes the effect of pre-
cipitation errors. MPI-ESM model simulations are performed
on a Gaussian model grid with rather coarse spatial resolu-
tion (T63≈ 1.85◦).

Watch forcing data (ERA-interim), WFD(EI)

The model forcing data used in the present study is based
on a methodology created in the EU WATCH project (http:
//www.eu-watch.org) and merges in situ observations with
reanalysis data (Weedon et al., 2011). The WFD is based
on corrected ERA40 (ECMWF Re-Analysis 40 yr) reanaly-
sis data (Uppala et al., 2005). An elevation correction was
applied for most variables. Furthermore, rainfall and snow-
fall were subject to extensive corrections to remove biases in
the reanalysis data. An undercatch correction was applied for
precipitation to ensure that the monthly statistics are similar
to in situ observations of the Global Precipitation Climatol-
ogy Centre (Schneider et al., 2008) while the daily variability
of the reanalysis data is retained (Weedon et al., 2011). The
forcing data used in the present study (WFDEI) was gen-
erated applying the WFD methodology to the ERA-interim
reanalysis (Dee et al., 2011) data (Weedon et al., 2011). The
WFDEI dataset covers the period 1979–2009 so far on a res-
olution of 0.5◦. In order to serve as meteorological input for
JSBACH it was regridded to T63 resolution.

2.1.3 ERA-interim soil moisture

ERA-interim is the latest global reanalysis of the European
Centre for Medium Range Weather Forecasts (ECMWF).

It covers the period from 1979 until present and is based
on a variational data assimilation system that assimilates a
multitude of in situ and satellite observations in a consistent
framework (Dee et al., 2011).

Soil moisture is a prognostic variable in ERA-interim and
is provided for four soil layers with a thickness of 0.07, 0.21,
0.72 and 1.89 [m], respectively. The ERA-interim soil mois-
ture data was extracted from the ERA-interim data archive
for the period 1979–2009 and regridded to the same spa-
tial grid as MPI-ESM using conservative remapping. For
the present study the first soil layer is used for the analysis.
As ERA-interim data is available every 6 h, daily mean soil
moisture fields were calculated by averaging data for each
day and monthly means were calculated subsequently from
the daily means.

2.2 Precipitation data

The precipitation data used in the present study com-
prise different data sources. Precipitation information from
a satellite-based product as well as reanalysis data and a bias
corrected reanalysis product are used for comparison of pre-
cipitation with soil moisture dynamics. The satellite-based
product and bias-corrected reanalysis dataset use a common
in situ dataset to correct for monthly biases in the precipita-
tion record.

2.2.1 GPCP

The Global Precipitation Climatology Project (GPCP, v2.2)
data product is based on satellite observations (Adler et al.,
2003, 2011). The monthly product used in this study has
a spatial resolution of 2.5◦ × 2.5◦ and provides data since
1979. It is based on a blended gauge-satellite product that
combines precipitation retrievals from polar-orbiting pas-
sive microwave imagers (SSM/I) as well as geostationary
observations (IR data). The satellite retrievals are further
bias-corrected using rain gauge data from the Global Pre-
cipitation Climatology Centre’s (GPCC) Monitoring Product
(Schneider et al., 2008).

2.2.2 ERA-interim precipitation

The ERA-interim precipitation is produced by the ERA-
interim forecasting model based on temperature and hu-
midity information as derived by the assimilation of at-
mospheric and terrestrial observations. Total precipitation
estimates are only available for forecasting time steps at
00:00 and 12:00 UTC. The 12 h segment following each fore-
cast step is used to obtain daily estimates of the rainfall
rate by integrating all forecast steps within the time peri-
ods 00:00–12:00 and 12:00–24:00 UTC. This sampling ap-
proach is similar to that ofDee et al.(2011). In general, ERA-
interim overestimates precipitation especially in tropical re-
gions compared to GPCP (Dee et al., 2011). As reanalysis
precipitation is model generated, it also suffers from biases
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in annual or seasonal means over different regions (Lorenz
and Kunstmann, 2012). The constraints imposed on precipi-
tation by the data assimilation of other variables leads to rea-
sonable variabilities, especially on a day-to-day basis, which
is, e.g., utilized in the WFD and WFDEI. The usage of differ-
ent observing systems in the data assimilation of re-analyses
may lead to different biases or spurious trends (Hagemann
et al., 2005) and should therefore be interpreted very care-
fully. The original ERA-interim spatial resolution (≈ 0.7◦)
was resampled to the T63 grid of MPI-ESM (≈ 1.85◦) for
further analysis.

2.2.3 WFDEI precipitation

The WFDEI data is based on ERA-interim reanalysis data
that was corrected using in situ gauge information. It thus
mediates between ERA-interim and GPCP datasets, which
are solely based on observations or reanalysis data.

WFDEI combines ERA-interim reanalysis rainfall data
with the version 4 of the GPCC rain gauge product
(Schneider et al., 2008). After a gauge undercatch correc-
tion and an adjustment of wet days based on the CRU TS2.1
observations (New et al., 1999, 2000; Mitchell and Jones,
2005), the GPCCv4 product is used to correct for monthly
biases in the reanalysis precipitation data while the temporal
dynamics is preserved from the reanalysis fields. Thus, the
WFDEI accounts for systematic known weaknesses in the
reanalysis datasets like an overestimation of wet days in the
tropics (Uppala et al., 2005).

3 Methods

The data in the present study corresponds to geospatial data
that can be represented by a matrixXm×n = (x1, . . . , xn)
whereasm corresponds to the number of time steps andn to
the number of grid cells. Each column vectorxk, k ∈ 1, . . . ,n,
corresponds to a time series of soil moisture or precipitation.
Monthly means are calculated forxk from all valid samples.

3.1 Definitions

3.1.1 Calculation of anomalies

Anomalies of precipitation and surface soil moisture are cal-
culated by removing the mean seasonality from the monthly
mean time seriesxl,j whereasl ∈ (1, 2, . . . , 12) is an index
for the month andj is an index for the year. The anomaly
time seriesx′

l,j is given by

x′

l,j = xl,j − xl,j = xl,j −
1

n

n∑
k

xl,k, (1)

whereasn is the number of years used to calculate the
anomaly time series. All analysis presented in this study will
be based on anomalies. Note that a linear detrending of the

time series will be applied in some cases prior to calculating
the monthly anomaly time series to avoid spurious correla-
tions due to similar temporal long-term trends.

3.1.2 Correlation and partial correlation analysis

The Pearson product–moment correlation coefficient is used
as a measure for linear correlation between the different soil
moisture and precipitation datasets. The correlation coeffi-
cient between two variables of sizem is calculated as

ρxy =

m∑
i=1

(xi − x) (yi − y)√
m∑

i=1
(xi − x)2

√
m∑

i=1
(yi − y)2

. (2)

Precipitation is the major forcing for soil moisture variabil-
ity. Soil moisture dynamics is however also affected by, e.g.,
soil hydraulic properties, vegetation or evapotranspiration.
Partial correlation analysis is therefore used in addition to
the general linear correlation analysis to analyze the general
skill of ECVSM to capture the soil moisture dynamics. Par-
tial correlation corresponds to the correlation of two datasets
(x, y) where the effect of an additional controlling variable
(z) has been removed. Formally, the partial correlation coef-
ficient between variablesx andy removing the effect of the
controlling variablez is given by

ρxy|z =
ρxy − ρxz ρzy√

1 − ρ2
xz

√
1 − ρ2

zy

. (3)

Partial correlation analysis is used in the present study to in-
vestigate the relationship between two soil moisture datasets
under the condition that the variability due to the rainfall dy-
namics has been removed before comparing the soil moisture
datasets. This gives additional insight into the capabilities of
ECVSM to represent soil moisture dynamics independent of
precipitation dynamics.

3.1.3 Percentile correlation

The percentile distribution of soil moisture gives insight into
the spatial patterns of temporal soil moisture dynamics as
represented in either the simulated or observed soil moisture
fields. The percentiles are derived from the probability den-
sity function, which is constructed from the time series of
each grid cell individually. The advantage of comparing two
soil moisture datasets by their percentile distribution is that it
is independent from the absolute soil moisture values, but ad-
dresses only the similarity of relative soil moisture dynamics.

The p-th percentilesp(p) of a dataset withp ∈ (0.05,
0.1, . . . , 0.95) are calculated from the time seriesx for each
grid cell, which results in a spatial map, stored in a vector of
sizen for eachp(p). The similarity between the percentile
maps of thep-th percentile of two variables is then calculated
as the linear correlationρ(px(p), py(p)).
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3.2 An example application of ECVSM for regional
climate studies

The capability to capture significant climate anomalies is a
crucial property of an ECV data record. It has been shown
that satellite-based surface soil moisture records are capable
to capture well the regional drought and flooding events like,
e.g., the 2011 droughts in Australia, in the Horn of Africa
and in the southern US (de Jeu et al., 2012).

The devastating drought in Africa’s Sahel belt during the
last half of the 20th century has been one of the largest and
longest climate anomalies observed so far during the satel-
lite era. The negative precipitation anomalies started in the
1960s with a minimum around 1980 (Fig.1). Since this min-
imum, the rainfall recovered and it has been shown in var-
ious studies that the vegetation in the Sahel recovered sub-
sequently (Olsson et al., 2005; Hickler et al., 2005; Fensholt
et al., 2012).

Land surface–atmosphere feedbacks are likely to have
been enhanced the Sahelian drought (Charney et al., 1977;
Zeng, 1999) and it has been shown that soil moisture pat-
terns affect the convective precipitation in this region (Taylor
et al., 2011).

The ECVSM dataset is the first ever available multidecadal
observation-based soil moisture data product that allows one
to investigate the relationship between soil moisture, pre-
cipitation and vegetation dynamics in the Sahel for over
three decades and to compare the observations against model
simulations.

The present study investigates how the Sahelian drought
event is captured by ECVSM and the other soil moisture
and precipitation datasets. It will be evaluated if the ECVSM
dataset provides suitable information to support regional cli-
mate studies on interannual to multidecadal timescales in the
Sahel.

In this study, the Sahelian belt is subdivided in five sub-
regions to capture different precipitation regimes in the re-
gion (Fig. 1). The longitudinal division followsHuber and
Fensholt(2011) andLebel and Ali(2009).

4 Results

4.1 Spatiotemporal data coverage

The ECVSM dataset has data gaps that are due to varying
temporal and spatial coverage of the observations as well
as different quality of the input data. Especially in the first
decade of the ECVSM dataset, a large number of data gaps
occurred due to the poor spatial coverage of the satellite in-
struments (Fig.2). In the first pentad of the 1980s, nearly
50 % of the year was without any data coverage, which was
mainly due to the small swath width of the used satellite
instruments (Nimbus-SMMR) and a reduction of imaging
capabilities due to power constraints of the satellite. This
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between 10 and 20◦ N. Longitudinal extent is given as W1 (20–
10◦ W), W2 (10–00◦ W), C1 (00◦ W–15◦ E), C2 (15–25◦ E), and
E1 (25–40◦ E) (data: GPCP) (top panel). Sahel rainfall anomalies
for the period 1900–2011 and the region from 10–20◦ N, 20◦ W–
10◦ E (data fromhttp://jisao.washington.edu/, Ali and Lebel, 2009)
(bottom panel).

explains why a large portion of the globe contains a large
fraction of data gaps (Fig.2). In northern latitudes, the frac-
tion of missing data exceeds 80 % of all days of the period
1978–2009. Figure2 shows further the fraction of missing
data for the ESA ECVSM dataset in different preprocessing
steps. The raw ECVSM data contains on average a data gap
fraction of 73 % (±17 %); parentheses indicate standard de-
viations. The remapping of the dataset to T63 resolution de-
creases the fraction of data gaps to 60 % (±16 %). For many
applications, time series without gaps are required, which
might be achieved, e.g., through temporal smoothing. Fig-
ure2 shows also the effect of a 5 day running mean temporal
smoothing filter on the data coverage which, is significantly
improved (missing data: 30± 23 %).

4.2 Comparison of surface soil moisture dynamics

4.2.1 Global mean fields

The global mean soil moisture is 0.18± 0.09, 0.2± 0.07 and
0.22± 0.09 for JSBACH, ECVSM and ERA-interim, respec-
tively. ECVSM and JSBACH show a temporal variability

www.hydrol-earth-syst-sci.net/17/3523/2013/ Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013
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Fig. 2. Number of days per year without any soil moisture observations globally in ECVSM (top); Frac-
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Fig. 2. Number of days per year without any soil moisture observations globally in ECVSM (top panel); fractional coverage of missing data
for ECMSM in different pre-processing steps: raw: data at original spatial and temporal resolution, T63: data remapped to T63 grid, smooth:
time series smoothed with 5 day running average kernel. Numbers in the figure titles indicate global mean and stdv (bottom panels).

that is closer to each other than to that of the ERA-interim,
which has a much smaller temporal variability than the other
datasets. The global mean coefficient of variation is almost
half as large for ERA-interim (CVERA ≈ 0.12) as for JS-
BACH (CVJSB≈ 0.24) and ECVSM (CVECVSM ≈ 0.2).

Figure3 shows distinct differences in the spatiotemporal
zonal mean soil moisture fields and its anomalies. The bi-
ases between the different datasets are clearly observable.
JSBACH shows a more pronounced seasonal cycle in the
subtropical areas while ECVSM and ERA-interim show a
smaller variability in these areas.

While the simulated soil moisture fields are homogeneous
over time, the ECVSM dataset clearly shows inconsistencies
in the time series. A drying of the zonal mean soil mois-
ture is for instance observed in 2002. Further discontinuities
can be observed in 1987 and 2006. These discontinuities are
also observable in the anomaly plots, which show in general
much stronger amplitudes for ECVSM than for ERA-interim
or JSBACH.

As discontinuities in ECV time series can easily introduce
artificial trends in time series that could be misinterpreted
as a climate signal, a careful analysis of such kind of time
series is important (Loew and Govaerts, 2010). In particu-
lar, a much more thorough analysis of the causes and effects
of the observed discontinuities on data analysis is needed,
which is beyond the scope of the present study. It is however
emphasized that a careful treatment of trends derived from
ECVSM is necessary.

4.2.2 Correlation between soil moisture fields

Figure 4 shows the correlation distribution between the
monthly mean surface soil moisture of different datasets as

well as the distribution and maps of the correlation between
their anomalies. Highly significant correlations are observed
between all datasets, which indicates in general a good skill
of all datasets to represent the interannual and seasonal sur-
face soil moisture variability in a consistent way. Larger dif-
ferences are observed in the northern latitudes, caused by
the poor data coverage in ECVSM due to snow and frozen
soil conditions. Negative correlations are here especially ob-
served between ECVSM and both models.

While both models show also significant positive corre-
lations in the tropical areas with dense vegetation like the
Amazon or Congo basins, the ECVSM does not show any
significant correlations in these areas with either of the model
datasets. This was expected, as the remote sensing signal
is perturbed by dense vegetation and the microwave sig-
nal is lacking any soil moisture information in these areas
(Jeu et al., 2008; Dorigo et al., 2010). The global mean cor-
relations between soil moisture anomalies of ECVSM and
JSBACH (ERA-interim) areρ = 0.41± 0.2 (ρ = 0.36± 0.19)
while the anomaly correlation between the model simula-
tions is higher (ρ = 0.64± 0.2). Thus, in areas where the mi-
crowave signal is in general sensitive to soil moisture dynam-
ics, the ECVSM dataset shows reasonable agreement with
the two simulated soil moisture datasets for both, absolute
values as well as for the soil moisture anomalies. A more
detailed comparison of the soil moisture statistics of the dif-
ferent datasets will be made in the following by analyzing the
soil moisture percentile distribution.

4.2.3 Percentiles of soil moisture dynamics

The percentiles of the soil moisture were calculated from
the time series of each dataset for each grid cell. FigureA1

Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013 www.hydrol-earth-syst-sci.net/17/3523/2013/
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Fig. 3. Time-latitude diagrams for monthly mean volumetric surface soil moisture and surface soil mois-
ture anomaly data sets [m3 m−3].
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Fig. 3.Time-latitude diagrams for monthly mean volumetric surface soil moisture and surface soil moisture anomaly datasets [m3 m−3].
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Fig. 4.Correlation coefficient for the linear correlation between the surface soil moisture anomalies: ERA vs. ECVSM, ECVSM vs. JSBACH,
ERA vs. JSBACH. Only significant correlations (p value< 0.1) are shown. Frequency distribution of correlation coefficients between differ-
ent datasets is shown in the histogram (solid line: soil moisture data; dashed line: soil moisture anomalies).

shows the 5, 50 and 95 % percentile maps for ECVSM, ERA-
interim and JSBACH. The 5 and 95 % values correspond to
the lower (dry) and upper (wet) limits of the soil moisture
dynamics. The similarity between the spatial patterns of each
percentile was compared by calculating the correlation coef-
ficient ρ between the percentile maps of two datasets. Re-
sults of this correlation analysis are summarized in Fig.5 for
the different percentiles. The highest correlations (ρ ≈ 0.75)
were found between ECVSM and JSBACH. The correlations
between ERA-interim and JSBACH are lower (ρ ≈ 0.6) and
the relationship between ERA-interim and ECVSM shows
the weakest spatial correlations of the percentiles (ρ ≈ 0.4).

As JSBACH soil moisture and ECVSM soil moisture
percentiles are completely independent, the results indicate
that the model’s soil moisture spatial pattern and temporal

variability seems to be in good agreement with the observed
soil moisture dynamics in ECVSM. ERA-interim deviates
stronger from ECVSM observations, but is in closer agree-
ment with JSBACH simulations. A potential reason for the
different skills in reproducing the observed ECVSM soil
moisture patterns by the models might be related to the pre-
cipitation forcing used. While the JSBACH experiments are
based on offline simulations using the WFDEI, the ERA-
interim precipitation results from coupled land–atmosphere
simulations. ERA-interim precipitation biases have been re-
ported in the literature. In particular, ERA-interim shows wet
biases for the greater part of the Northern Hemisphere and in
parts of South America (Dee et al., 2011). Note that the ERA-
interim surface water balance is not necessarily closed as
soil moisture nudging is conducted by the data assimilation

Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013 www.hydrol-earth-syst-sci.net/17/3523/2013/
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Fig. 5. Pearson product–moment correlation coefficients between
the p-th percentiles of ERA-interim, JSBACH and ECVSM soil
moisture fields.

system that may lead to sources and sinks in the surface wa-
ter balance and, thus, to less consistency of soil moisture time
series (Hagemann et al., 2005).

4.2.4 Relationship of soil moisture and precipitation
dynamics

The relationship between precipitation and soil moisture dy-
namics was analyzed by comparing GPCP, ERA-interim
and WFDEI monthly precipitation data with the surface soil
moisture data, assuming that the precipitation dynamics is
the major driver for the surface soil moisture dynamics on
monthly timescales. The effect of evaporation is therefore not
explicitly considered in the analysis, but the effect of evap-
otranspiration is however reflected in the soil moisture dy-
namics of ECVSM as well as the model-based soil moisture
fields.

Figure 6 shows the correlation coefficients between
monthly precipitation (rainfall and snowfall) and surface soil
moisture anomalies. Both ERA-interim and JSBACH show
high anomaly correlations with all precipitation datasets. The
highest anomaly correlations are observed for ERA-interim
with ERA-interim precipitation data and for JSBACH with
WFDEI precipitation data, as would have been expected
since these are the respective precipitation forcing datasets
used for the generation of the soil moisture datasets. The
anomaly correlation of ERA-interim with the ERA-interim
precipitation data is highest (ρ > 0.8) in tropical areas. The
correlation patterns of the soil moisture datasets with either
GPCP or WFDEI precipitation are very similar for all soil
moisture datasets. This is explained by the bias correction of
GPCP and WFDEI, which is applied on monthly timescales
using the same GPCC observations (see Sect.2.2). The

monthly mean (anomalies) are therefore correlated with each
other.

The ECVSM soil moisture shows coherent anomaly cor-
relation patterns with all precipitation datasets. In general,
the correlations are lower than between the simulated soil
moisture fields and precipitation data. However, significant
positive correlations (ρ ≈ 0.3) between ECVSM and precip-
itation anomalies are found for the entire globe, which indi-
cates a general skill of the ECVSM dataset in representing
intra- and interannual soil moisture variability.

4.2.5 Partial correlation results

It has been demonstrated that the different soil moisture
datasets show a significant correlation with different precip-
itation data as well as between each other. A correlation be-
tween simulated soil moisture and ECVSM might be how-
ever spurious as both might be dependent on common pre-
cipitation anomalies.

For model evaluation purposes it is however of particular
interest whether the land surface model is capable of simu-
lating the observed anomalies of a geophysical variable. This
requires to remove the common forcing effects, precipitation
in this case, in both soil moisture datasets.

The simulated soil moisture fields were therefore corre-
lated against ECVSM using partial correlations where the
effect of the precipitation forcing was removed (control vari-
able). For ERA-interim, the ERA-interim precipitation was
removed while WFDEI precipitation was removed for JS-
BACH simulations. As the true precipitation is unknown, the
GPCP dataset is assumed to be the precipitation dataset that
best captures the temporal and spatial precipitation dynamics
of the ECVSM dataset. It is therefore used as a control vari-
able on the ECVSM soil moisture fields for the partial cor-
relation analysis. This approach allows one to deduct if the
used dataset shows common soil moisture signals that are in-
dependent from the governing soil moisture dynamics. It is
therefore an additional test to assess the similarities between
the different investigated datasets.

Figure 7 shows partial correlation results that are based
on soil moisture anomaly time series. The partial correlation
coefficients of ERA-interim and JSBACH are very similar.
Significant partial correlations between the simulated and ob-
served soil moisture data are especially observed in semiarid
regions. In general, JSBACH shows higher partial correlation
coefficients for the soil moisture data than ERA-interim.

The highest partial correlation coefficients are observed in
regions that are not affected by snow or by dense vegeta-
tion. These areas correspond to regions where the satellite
observations are most sensitive to soil moisture variability
and where the evapotranspiration is largely affected by soil
moisture limitations. The largest differences between the par-
tial correlation coefficients are observed in the Sahelian belt
in Africa, where JSBACH has partial correlation coefficients

www.hydrol-earth-syst-sci.net/17/3523/2013/ Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013
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Fig. 6.Significant correlations (p value< 0.1) of monthly GPCP (top panels), ERA-interim (middle panels) and WFDEI precipitation anoma-
lies against ERA-interim (left panels), JSBACH (middle panels) and ECVSM (right panels) soil moisture anomalies.
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Fig. 7. Correlation coefficients of partial correlation between ERA-interim (left panel) and JSBACH (right panel) soil moisture anomalies
against ECVSM soil moisture anomalies with removal of the effect of the respective precipitation forcing.

Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013 www.hydrol-earth-syst-sci.net/17/3523/2013/



A. Loew et al.: Mutidecadal soil moisture for climate 3533

Fig. 8.Pearson product–moment coefficient for temporal trend of precipitation (top panels) and soil moisture (bottom panels) for the Sahelian
rainfall seasons (June–September) in the period 1979–2009: precipitation (from left to right panels: GPCP, WFDEI, ERA-interim), soil
moisture (from left to right panels: ECVSM, JSBACH, ERA-interim). Grid cells with significant correlations (p value< 0.1) are indicated
by stippled areas.

between 0.2 and 0.6, whereas ERA-interim does not show
any correlation in this region.

The fact that both datasets show correlations between sim-
ulated and observed surface soil moisture after removal of
the effect of precipitation is an indication that the ECVSM as
well as the model simulations capture a similar intra- and in-
terannual soil moisture variability, independent from rainfall.
The partial correlation analysis might be therefore consid-
ered as a diagnostic for the similarity of ECVSM and model
simulated interannual soil moisture dynamics.

4.3 Sahelian drought and interannual soil moisture
variability

An increase in Sahelian vegetation and precipitation was ob-
served since their minimum in the 1980s (Olsson et al., 2005;
Ali and Lebel, 2009; Huber et al., 2011; Fensholt and Proud,
2012). Figure8 shows linear trends of monthly mean precipi-
tation and soil moisture for the period 1979–2009. A clear in-
crease in precipitation in the Sahelian rainfall season (JJAS)
is observed in the GPCP dataset, which is consistent with the
literature. The WFDEI precipitation data shows also a posi-
tive precipitation trend, but the areas with a significant trend
are smaller. On the contrary, ERA-interim shows a signif-
icant negative trend in the precipitation time series, which
contradicts the in situ ground observations from GPCC that
are included in both the WFDEI data as well as GPCP pre-
cipitation estimates. There is no obvious explanation why
ERA-interim behaves different than the other two precipita-
tion records. One reason might be that the usage of different

observing systems in the data assimilation system used for
the ERA re-analysis may lead to biases or spurious trends
(Hagemann et al., 2005) and should therefore be interpreted
very carefully.

The time series of spatially integrated precipitation in the
Sahel shows a very similar temporal evolution with a posi-
tive trend for WFDEI and GPCP, whereas the long-term trend
in precipitation is less significant in WFDEI than for GPCP
(Fig. 9). The soil moisture in ERA-interim and ECVSM
shows significant negative soil moisture trends in the Sahel,
while the JSBACH simulations do not show any significant
change over the investigated time period. It has been however
shown byLoew (2013) that the significant positive trend in
GPCP data is mainly caused by the strong negative precipi-
tation anomalies at the beginning of the 1980s and is not sig-
nificant in the years thereafter, and that the long-term trend is
not significant if a few years in the 1980s are discarded from
the analysis.

Dorigo et al.(2012a) found a significant negative trend of
June-July-August surface soil moisture in the same region,
as derived from the ECVSM dataset for the period 1988–
2010. A comparison between reanalysis surface soil moisture
trends and microwave surface soil moisture observations at
the global scale is provided inAlbergel et al.(2013). They
compared two different reanalysis products (ERA-LAND
and MERRA) against ECVSM. They found a significant neg-
ative soil moisture trend (drying) for 72 % of the globe for
ERA-Land while for MERRA re-analysis positive trends for
59 % were found. The ECVSM shows significant negative

www.hydrol-earth-syst-sci.net/17/3523/2013/ Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013
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from 10◦ N to 20◦ N and 20◦ W to 40◦ E for the different datasets used in the study.
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Fig. 9. Time series of mean Sahelian rainfall (top panel) and soil
moisture (bottom panel) as aggregated over the area from 10 to
20◦ N and 20◦ W to 40◦ E for the different datasets used in the study.

trends for 73.2 %, which was found to be more in line with
ERA-Land.

The ECVSM as well as the ERA-interim soil moisture
show significant negative trends in wide parts of the Sahel
(Fig. 8) while the JSBACH simulation shows a more diverse
picture. In the central part a significant negative temporal
trend is also observed, while a dipole of significant trends is
observed in the western part with an increase in the north and
a decrease in the south. The eastern part shows no significant
trends in the JSBACH simulation. The positive trend in pre-
cipitation and negative trend in surface soil moisture seem to
be contradictory, but could be related to an increase in evapo-
transpiration by the increased abundance of vegetation in the
area.

In the following, we will investigate the interannual and
decadal variability of surface soil moisture as observed by
ECVSM and as simulated by ERA-interim and JSBACH.
The analysis will focus exclusively on the anomalies of soil

moisture and precipitation in order to be independent of bi-
ases between the different datasets.

The interannual soil moisture and precipitation anomalies
for the Sahel (20◦ W–45◦ E, 10–20◦ N) are shown in Fig.10
in time–latitude diagrams. The ECVSM and especially ERA-
interim surface soil moisture show a decline in the surface
soil moisture content throughout the period and all latitudes,
as has been already discussed, while the JSBACH soil mois-
ture shows no clear temporal trend. The ERA-interim time
series shows some discontinuities. A drier period (1983–
1995) is followed abruptly by a wetter period that lasts un-
til approximately 2001. A further drier period follows after
2006.

The precipitation anomalies between GPCP and WFDEI
are consistent with each other as would have been expected,
while ERA-interim precipitation shows a pronounced decline
throughout the period 1979–2009.

The ERA-interim and ECVSM soil moisture anomalies
show a linear temporal trend of soil moisture for the en-
tire time period. Linear detrended anomaly time series were
therefore used for the further analysis to focus the analy-
sis exclusively on interannual soil moisture anomalies and
to avoid any suspicious correlations due to common long-
term trends. The ECVSM and JSBACH surface soil moisture
show very consistent anomaly patterns with precipitation if
the linear trends are removed from the data. In general the
ECVSM data reproduces very well the dry and wet anoma-
lies that are observed in the GPCP record.

To analyze the relationship between soil moisture and pre-
cipitation anomalies, the correlation between the anomaly
time series was calculated for different regions (Fig.1). The
anomaly correlation coefficients between precipitation and
soil moisture are summarized in Fig.11. Very similar corre-
lation coefficients are found for GPCP and WFDEI as both
use the same in situ observations from GPCC on monthly
timescales to compensate for biases in their data products.
JSBACH soil moisture anomalies show high correlations
(r > 0.6) for all precipitation datasets, while ERA-interim
soil moisture anomalies are best correlated with ERA-interim
precipitation data. The ECVSM anomalies show highest cor-
relations with WFDEI/GPCP precipitation anomalies in all
regions.

As the soil moisture anomalies are likely to be highly cor-
related with the precipitation anomalies, a partial correlation
analysis was conducted to quantify how the ECVSM obser-
vations are related to the simulated surface soil moisture dy-
namics when the effect of the precipitation boundary con-
dition is removed. It has been shown that the ERA-interim
and ECV soil moisture both show a long-term decline of soil
moisture in the analysis period. This common linear trend
can introduce a significant correlation in the partial correla-
tion analysis. The partial correlation was therefore conducted
twice, once based on soil moisture and precipitation anoma-
lies and second on anomalies that have been detrended prior
to the analysis (Fig.12).

Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013 www.hydrol-earth-syst-sci.net/17/3523/2013/
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Fig. 10. Time-latitude diagrams for monthly anomalies of surface soil moisture [m3 m−3] and precipita-
tion [mmday−1] in the Sahel region (20◦ W–45◦ E, 10◦ N–20◦ N). Anomalies are calculated by remov-
ing the mean seasonal climatology derived from the whole timeseries (1979–2009).
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Fig. 10.Time–latitude diagrams for monthly anomalies of surface soil moisture [m3 m−3] and precipitation [mm day−1] in the Sahel region
(20◦ W–45◦ E, 10–20◦ N). Anomalies are calculated by removing the mean seasonal climatology derived from the whole time series (1979–
2009).

In all regions, the ERA-interim and JSBACH soil mois-
ture anomalies show a positive correlation with the ECVSM
anomalies. In the western Sahel (W1, W2), ERA-interim and
JSBACH show these positive correlations with ECVSM also
when the data was detrended before the analysis. Only JS-
BACH shows a positive correlation with the ECVSM soil
moisture anomalies in the central and eastern Sahel when
the linear trend in the time series has been removed. This
clearly indicates that the partial correlation of ERA-interim
anomalies is largely dependent on the long-term linear trend
in the dataset and cannot be interpreted as a common interan-
nual soil moisture dynamics with ECVSM. On the contrary,
negative correlations between ERA-interim and ECVSM soil
moisture are observed for the eastern and central regions,
which indicates that the ERA-interim soil moisture dynamics

is highly dependent on the ERA-interim precipitation data in
these regions.

5 Summary and conclusions

The objectives of the present study were to assess the poten-
tial and limitations of the novel ECVSM dataset for climate
modeling applications. The identified potentials and limita-
tions are briefly summarized in Table1. The analysis in the
present paper focused on a limited set of potential appli-
cations of ECVSM for climate model evaluation, the gen-
eral study of soil moisture–precipitation interdependencies
as well as on the applicability of ECVSM to capture interan-
nual soil moisture dynamics and its anomalies at the regional
scale. All analyses were done on monthly timescales.

www.hydrol-earth-syst-sci.net/17/3523/2013/ Hydrol. Earth Syst. Sci., 17, 3523–3542, 2013
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Fig. 11. Correlation coefficient between precipitation and soil moisture anomalies in different regions in
the Sahel: GPCP (top), WFD (middle), ERA-interim precipitation (bottom). Data was detrended before
analysis.
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Fig. 11.Correlation coefficient between precipitation and soil moisture anomalies in different regions in the Sahel: GPCP (top left panel),
WFD (top right panel) and ERA-interim precipitation (bottom panel). Data was detrended before analysis.
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Fig. 12. Partial correlation coefficients between ERA-interim and JSBACH soil moisture and ECVSM
with prior removal of precipitation influence on the correlation coefficient.
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Fig. 12. Partial correlation coefficients between ERA-interim and
JSBACH soil moisture and ECVSM with prior removal of precipi-
tation influence on the correlation coefficient.

The ECVSM dataset is unique, as it is the first and only
existing observation-based soil moisture data record for mul-
tiple decades. The analysis has shown that the present dataset
is generally in good agreement with other soil moisture
datasets from modeling studies as well as rainfall data.

In areas where the microwave signal is in general sensitive
to soil moisture dynamics, the ECVSM dataset shows rea-
sonable agreement with the ERA-interim and JSBACH soil
moisture datasets for absolute values as well as for the soil
moisture anomalies.

Model evaluation using soil moisture statistics

Using percentile distributions has been found to be a use-
ful approach to evaluate the general spatial pattern of soil
moisture of a land surface scheme used in a climate model as
well as its temporal variability. The JSBACH soil moisture
fields have shown higher spatial similarities to the ECVSM
observations than the ERA-interim soil moisture field. These
differences might be partly attributed to the differences in
the precipitation forcing as is indicated by a partial correla-
tion analysis, which revealed that the ECVSM soil moisture
anomalies show comparable correlation patterns with ERA-
interim and JSBACH soil moisture anomalies after removal
of the influence of the precipitation forcing. It needs to be
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Table 1.Summary of potential and limitations of ECVSM for climate modeling applications.

Potential Current limitations

Climate model evaluation

Percentile statistics are useful tool for model evaluation ECVSM soil moisture probability density
function is dependent on Noah GLDAS and
therefore does not provide a model independent
dataset for soil moisture percentile distribution

ECVSM shows consistent temporal trend patterns ECVSM shows discontinuities in the long-term
with precipitation and ancillary soil moisture data time series, which are likely to be the result from

changing observing systems. Any conclusions
from trend analysis therefore need to be taken
very carefully.

Time series not homogeneous due to different data
rescaling approaches before and after 1988; see
Liu et al. (2012), Sect. 3.1.2 for details
Limited data coverage in early years (< 1990)

Process and regional studies

Good representation of intra- and interannual soil Risk of regionally missing soil moisture
moisture anomalies at global to regional scale information due to binary-like blending technique

applied; example: missing Europe’s 2003 heat wave

Suitable soil moisture information for High latitude limitation due to snow cover and
land–atmosphere interactions in the Sahel frozen soil conditions

noted however, that the ERA-interim soil moisture dataset
does not benefit from recent improvements in the ECMWF
land surface scheme. ERA-interim soil moisture might show
different variability in different years. The ERA-land reanal-
ysis has therefore been generated, which is an offline esti-
mate of land surface fluxes without implicit coupling to an
atmospheric model (Balsamo et al., 2012; Albergel et al.,
2013).

While the percentile distribution is in general a very use-
ful method to evaluate the general soil moisture dynamics
of a model from observational data, it needs to be empha-
sized that the soil moisture dynamics in the ECVSM dataset
is not purely observation based. The ECVSM final product
was generated by harmonizing a multitude of soil moisture
products using the Noah land surface model output from
the Global Land Data Assimilation System (GLDAS) as a
common scaling reference (Liu et al., 2011). This implies
that the soil moisture statistics represented in ECVSM de-
pends on the soil moisture dynamics of the Noah land sur-
face model. ECVSM can therefore not provide an indepen-
dent data source for the statistics of soil moisture dynamics
at a particular location.

Interannual soil moisture dynamics

It is however emphasized that the temporal dynamic in
the dataset is not affected by the normalization procedure.
Thus, comparing temporal soil moisture and precipitation

anomalies provides additional insight in the temporal soil
moisture dynamics as represented by ECVSM. It was
demonstrated in the present study that the ECVSM dataset
shows in general good anomaly correlations with differ-
ent global precipitation products. Additionally, the ECVSM
dataset captures well the intra- and interannual soil moisture
variability and has also skill to represent soil moisture dy-
namics independent from the precipitation forcing. The high-
est skill in representing soil moisture dynamics was observed
in areas that are not affected by dense vegetation or snow and
ice. As these areas could be clearly identified from the partial
correlation analysis it can be concluded that partial correla-
tion can be used as an indirect validation of the sensitivity of
ECVSM to soil moisture variability.

Data homogeneity

In high latitudes, the data density of ECVSM is limited due
to snow cover and frozen ground conditions. Negative cor-
relations between ECVSM and simulated soil moisture were
observed in these high latitudes, which are likely due to miss-
ing snowmelt peaks in the first part of the ECVSM time se-
ries. Further detailed studies on the reasons for these negative
correlations are required.

The ECVSM shows discontinuities in its time series,
which are especially recognized in zonal mean anomaly
plots (Fig.3). These temporal discontinuities are likely to be
caused by a change in the observing system, which affects
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Fig. A1. Soil moisture percentiles [m3 m−3] for ECVSM (left panels), ERA-interim (middle panels) and JSBACH (right panels) for three
different percentiles ofp = (0.05, 0.5, 0.95) (top-down panels).

the absolute soil moisture values as well as the temporal sam-
pling of the data. Discontinuities are, e.g., observed in 2002
(integration of AMSR-E data), 1987 (change from SMM/R
to SSM/I) and 2006 (inclusion of METOP ASCAT). The in-
put data for ECVSM has been also rescaled prior to the gen-
eration of the long-term record. Different data rescaling was
applied before and after 1987 for the passive microwave ob-
servations (seeLiu et al., 2012, Sect. 3.1.2 for details). As
a consequence of this scaling, some long-term trends in the
time series might be minimized and any trend analysis per-
formed on ECVSM needs to be interpreted critically.Dorigo
et al. (2012a) therefore investigated global trends in surface
soil moisture dynamics only after 1988.Loew(2013) has an-
alyzed the importance of different periods on the estimation
of long-term trends from satellite ECV records and shows
that small changes in the investigation period might have a
strong effect on the correlation results obtained. We there-
fore investigated the robustness of the results of the present
study by comparing the results obtained from the whole data
record (1979–2009) against results for the period 1987–2009.
In general, results (not shown in the paper) from both periods
show very similar spatial correlation patterns with slightly
higher correlation values for the period 1987–2009, which
would have been expected as discussed before.

Regional climate studies – the Sahel example

It has been shown that the ECVSM dataset is well suited
to study regional climate phenomena on multidecadal

timescales. The Sahelian rainfall dynamics and its rep-
resentation in ECVSM were investigated as an example
for the potential applications of ECVSM on the regional
scale. ECVSM has high correlations of surface soil moisture
anomalies with the soil moisture anomalies of JSBACH as
well as with observed precipitation anomalies. Partial corre-
lation analysis revealed the highest partial correlation coeffi-
cients between ECVSM and JSBACH, which indicates that
both datasets show a comparable soil moisture residual after
removal of the precipitation dynamics. It needs to be empha-
sized that the temporal dynamics of ECVSM and JSBACH
is completely independent as both are based on different
data sources. Significant correlations between the datasets
can therefore be considered as a common representation of
soil moisture dynamics. ECVSM therefore provides suitable
information to support regional climate studies in the Sahel.
More detailed studies are however needed to better under-
stand the different drivers of soil moisture dynamics in this
region.

Overall, the ECVSM dataset provides a first unique dataset
with relevant information for climate studies. A further po-
tential application of ECVSM for climate model evalua-
tion studies is the identification of characteristic timescales
in land surface models. By calculating the autocorrelation
length from both, models and observations, one can identify
characteristic timescales. This information might be used,
e.g., to infer relevant model specific soil parameterizations
like characteristic timescales, which are important for having
a realistic soil moisture memory effect in the climate model
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land surface schemes, which is in turn of particular impor-
tance for seasonal climate predictions. Further studies will
therefore focus on an evaluation of soil moisture memory ef-
fects from ECVSM and comparisons to the MPI-ESM land
surface scheme.
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