Content-Length: 356968 | pFad | https://doi.org/10.1007/s11056-014-9460-6

a=86400 Evaluating performance of short-rotation woody crops for bioremediation purposes | New Forests Skip to main content
Log in

Evaluating performance of short-rotation woody crops for bioremediation purposes

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Decommissioned animal waste lagoons contain large quantities of nutrients including nitrogen (N) and phosphorus (P) and can cause pollution of nearby water resources. Using short-rotation woody crops (SRWCs) for nutrient uptake and biomass production might be an inexpensive and eco-friendly method for the stabilization of decommissioned lagoons. We evaluated the annual growth performance and nutrient uptake by sycamore (Platanus occidentalis) for five growing seasons and 25 different clones of eastern cottonwood (Populus deltoides) for four growing seasons in a soil backfilled, de-watered swine lagoon in north-central Oklahoma. Growth performance and nutrient uptake of cottonwood was higher than the sycamore in our study. At the end of the study, 5-year old sycamore reached an average height of 5.84 m [standard error (SE) = 0.39] and had an average diameter at breast height (dbh) of 5.91 cm (SE = 0.20), compared to 4-year old cottonwood height of 7.58 m (SE = 0.15) and dbh of 8.22 cm (SE = 0.34), respectively. Sycamore produced almost 30 Mg ha−1of total biomass, whereas cottonwood produced 53 Mg ha−1 by the end of the study. Total N and P uptake by sycamore was 327 (SE = 24) and 51 (SE = 4) kg ha−1 respectively, whereas cottonwood N and P uptake was 699 (SE = 41) and 99 (SE = 6) kg ha−1, respectively, by the end of the study. We conclude that SRWCs can use substantial amounts of nutrients from the decommissioned lagoons while producing wood and fiber products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20:399–411

    Article  Google Scholar 

  • Aneja VP, Chauhan JP, Walker JT (2000) Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. J Geophys Res 105:11535–11545

    Article  CAS  Google Scholar 

  • Ares A, Brauer D (2005) Aboveground biomass partitioning in loblolly pine silvopastoral stands: spatial configuration and pruning effects. For Ecol Manag 219:176–184

    Article  Google Scholar 

  • Aubrey DP, Coyle DR, Coleman MD (2012) Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management. Plant Soil 351:219–236

    Article  CAS  Google Scholar 

  • Francis JK, Baker JB (1981) Biomass and nutrient accumulation in a cottonwood plantation—the first four years. USDA Forest Service, Southern Research Station, Res Note SO-278

  • Brinks JS, Lhotka JM, Barton CD, Warner RC, Agouridis CT (2011) Effects of fertilization and irrigation on American sycamore and black locust planted on a reclaimed surface mine in Appalachia. For Ecol Manag 261:640–648

    Article  Google Scholar 

  • Casselman CN, Fox TR, Burger JA, Jones AT, Galbraith JM (2006) Effects of silvicultural treatments on survival and growth of trees planted on reclaimed mine lands in the Appalachians. For Ecol Manag 223:403–414

    Article  Google Scholar 

  • Cobb WR, Will RE, Daniels RF, Jacobson MA (2008) Aboveground biomass and nitrogen in four short-rotation woody crop species growing with different water and nutrient availabilities. For Ecol Manag 255:4032–4039

    Article  Google Scholar 

  • Coleman MD, Friend AL, Kern CC (2004) Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation. Tree Physiol 24:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Copeland C (2010) Animal waste and water quality: EPA’s response to the waterkeeper alliance court decision on regulation of CAFOs. Congressional Research Service, Washington, DC, https://www.fas.org/sgp/crs/misc/RL33656.pdf. Accessed 26 July 2013

  • Coyle DR, Coleman MD (2005) Forest production responses to irrigation and fertilization are not explained by shifts in allocation. For Ecol Manag 208:137–152

    Article  Google Scholar 

  • Davis AA, Trettin CC (2006) Sycamore and sweetgum plantation productivity on former agricultural land in South Carolina. Biomass Bioenergy 30:769–777

    Article  Google Scholar 

  • Devine WD, Tyler DD, Mullen MD, Houston AE, Joslin JD, Hodges DG, Tolbert VR, Walsh ME (2006) Conversion from an American sycamore (Platanus occidentalis L.) biomass crop to a no-till corn (Zea mays L.) system: crop yields and management implications. Soil Tillage Res 87:101–111

    Article  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104:16816–16821

    Article  PubMed Central  PubMed  Google Scholar 

  • Dungan RS (2010) Board-invited review: fate and transport of bioaerosols associated with livestock operations and manures. J Anim Sci 88:3693–3706

    Article  PubMed  CAS  Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  PubMed  CAS  Google Scholar 

  • EPA (2012) regulatory definitions of large CAFOs, medium CAFO, and small CAFOs. http://www.epa.gov/npdespub/pubs/sector_table.pdf. Accessed 25 July 2013

  • Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS (2007) The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Perspect 115:313–316

    Article  PubMed Central  PubMed  Google Scholar 

  • Gochis DJ, Cuenca RH (2000) Plant water use and crop curves for hybrid poplars. J Irrig Drain Eng 126:206–214

    Article  Google Scholar 

  • Graham RL, Wright LL, Turhollow AF (1992) The potential for short-rotation woody crops to reduce U.S. CO2 emissions. Clim Change 22:223–238

    Article  CAS  Google Scholar 

  • Guidi W, Piccioni E, Bonari E (2008) Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresour Technol 99:4832–4840

    Article  PubMed  CAS  Google Scholar 

  • Heilman PE, Fu-Guang X (1993) Influence of nitrogen on growth and productivity of short-rotation Populus trichocarpa × Populus deltoides hybrids. Can J For Res 23:1863–1869

    Article  CAS  Google Scholar 

  • Heilman P, Norby RJ (1998) Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass Bioenergy 14:361–370

    Article  CAS  Google Scholar 

  • Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergry cropping system. Biomass Bioenergy 25:147–165

    Article  CAS  Google Scholar 

  • Hinckley TM, Brooks JR, Ćermák J, Ceulemans R, Kuĉera J, Meinzer FC, Roberts DA (1994) Water flux in a hybrid poplar stand. Tree Physiol 14:1005–1018

    Article  PubMed  Google Scholar 

  • Isebrands JG, Karnosky DF (2001) Environmental benefits of poplar culture. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, National Research Council of Canada, Ottawa, ON, pp 207–218

    Google Scholar 

  • Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703

    Article  PubMed  CAS  Google Scholar 

  • Jones DD, Koelsch RK, Mukhtar S, Sheffield R, Worley JW (2006) Closure of earthen manure structures (including basins, holding ponds and lagoons). In: Rice JM, Caldwell DF, Humenik FJ (eds) Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers. St. Joseph, Michigan: ASABE, Pub Number 913C0306, pp 262–282

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29:1–9

    Article  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31:109–120

    Article  PubMed  CAS  Google Scholar 

  • Licht LA, Isebrands JG (2005) Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203–218

    Article  CAS  Google Scholar 

  • Lockaby BG, Clawson RG, Baker T (1997) Response of three hardwood species to irrigation and fertilization on an upland site. South J Appl For 21:123–129

    Google Scholar 

  • Lodhiyal LS, Lodhiyal N (1997) Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations. For Ecol Manag 98:167–179

    Article  Google Scholar 

  • Lodhiyal LS, Singh RP, Singh SP (1994) Productivity and nutrient cycling in poplar stands in central Himalaya, India. Can J For Res 24:1199–1209

    Article  Google Scholar 

  • Namkoong G (1969) Nonoptimality of local races. Proceedings of the 10th southern conference on forest tree improvement, Houston, TX, USA, pp 149–153

  • Oklahoma Climatological Survey (2013) Past data & files. http://www.mesonet.org/index.php/weather/station_monthly_summaries. Accessed 2 Oct 2013

  • Paulson M, Bardos P, Harmsen J, Wilczek J, Barton M, Edwards D (2003) The practical use of short rotation coppice in land restoration. Land Contam Reclam 11:323–338

    Article  Google Scholar 

  • Pell AN (1997) Manure and microbes: public and animal health problem? J Dairy Sci 80:2673–2681

    Article  PubMed  CAS  Google Scholar 

  • Penn CJ, Will R, Fultz L, Hamilton D (2013) Forage and tree seedling growth in a soil with an incased swine sludge layer. J Environ Manag 128:586–593

    Article  CAS  Google Scholar 

  • Ponette Q, Ranger J, Ottorini JM, Ulrich E (2001) Aboveground biomass and nutrient content of five Douglas-fir stands in France. For Ecol Manag 142:109–127

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Puri SL, Swamy SL, Jaiswal AK (2002) Evaluation of Populus deltoides clones under nursery, field and agrisilviculture system in subhumid tropics of Central India. New For 23:45–61

    Article  Google Scholar 

  • Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112

    PubMed  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Robison TL, Rousseau RJ, Zhang J (2006) Biomass productivity improvement for eastern cottonwood. Biomass Bioenergy 30:735–739

    Article  Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR, Rahmani M, Spriggs TA, Lin C, Alker GR, Isebrands JG, Segrest SA (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agrofor Syst 61:51–63

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schiffman SS, Bennett JL, Raymer JH (2001) Quantification of odors and odorants from swine operations in North Carolina. Agric For Meteorol 108:213–240

    Article  Google Scholar 

  • Singh B (1998) Biomass production and nutrient dynamics in three clones of Populus deltoides planted on Indogangetic plains. Plant Soil 203:15–26

    Article  CAS  Google Scholar 

  • Stolarski MJ, Szczukowski S, Tworkowski J, Wróblewska H, Krzyżaniak M (2011) Short rotation willow coppice biomass as an industrial and energy feedstock. Ind Crops Prod 33:217–223

    Article  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Swamy SL, Mishra A, Puri S (2006) Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system. Bioresour Technol 97:57–68

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA (1998) Short-rotation woody crop supply systems in the United States: what do we know and what do we need to know? Biomass Bioenergy 14:307–315

    Article  CAS  Google Scholar 

  • Van Lear DH, Waide JB, Teuke MJ (1984) Biomass and nutrient content of a 41-year-old loblolly pine (Pinus taeda L.) plantation on a poor site in South Carolina. For Sci 30:395–404

    Google Scholar 

  • van Miegroet H, Norby RJ, Tschaplinski TJ (1994) Nitrogen fertilization strategies in a short-rotation sycamore plantation. For Ecol Manag 64:13–24

    Article  Google Scholar 

  • Vanotti MB, Szogi AA, Hunt PG, Millner PD, Humenik FJ (2007) Development of environmentally superior treatment system to replace anaerobic swine lagoons in the USA. Bioresour Technol 98:3184–3194

    Article  PubMed  CAS  Google Scholar 

  • Zalesny RS Jr, Bauer EO (2007) Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation. Int J Phytoremed 9:281–306

    Article  CAS  Google Scholar 

  • Zalesny JA, Zalesny RS Jr, Wiese AH, Hall RB (2007) Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. Int J Phytoremed 9:513–530

    Article  CAS  Google Scholar 

  • Zalesny JA, Zalesny RS Jr, Wiese AH, Sexton BT, Hall RB (2008) Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate. J Sustain For 27:303–327

    Article  Google Scholar 

  • Zalesny RS Jr, Hall RB, Zalesny JA, McMahon BG, Berguson WE, Stanosz GR (2009) Biomass and genotype × environment interactions of Populus energy crops in the midwestern United States. Bioenerg Res 2:106–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Division of Agricultural Sciences and Natural Resources (DASNR), Oklahoma State University and McIntire-Stennis project OKL0 2796 for the funding. The authors would also like to thank Fernanda Bortolheiro, Rodrigo Carvalhais, Giulia Caterina, Ed Lorenzi, Rodolfo Mota, Marcela Olenscki, Jenisha Oli, Jason Pike, and Adam West for their help during the stand establishment and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Dipesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipesh, K.C., Will, R.E., Hennessey, T.C. et al. Evaluating performance of short-rotation woody crops for bioremediation purposes. New Forests 46, 267–281 (2015). https://doi.org/10.1007/s11056-014-9460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9460-6

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/s11056-014-9460-6

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy