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Abstract
Hurricane Harvey made landfall in August 2017 as the first land-falling category 4 hurricane to hit the
state of Texas since Hurricane Carla in September 1961. While its intensity at landfall was notable,
most of the vast devastation in the Houston metropolitan area was due to Harvey stalling near the
southeast Texas coast over the next several days. Harvey’s long-duration rainfall event was
reminiscent of extreme flooding that occurred in the neighboring state of Louisiana: both of which
were caused by a stalled tropical low-pressure system producing four days of intense precipitation.
A quantitative attribution analysis of Harvey’s rainfall was conducted using a mesoscale atmospheric
model forced by constrained boundary and initial conditions that had their long-term climate trends
removed. The removal of the various trends of the boundary and initial conditions minimizes the
effects of warming in the air and the ocean surface on Harvey. The 60 member ensemble simulations
suggest that post-1980 climate warming could have contributed to the extreme precipitation that fell
on southeast Texas during 26–29 August 2017 by approximately 20%, with an interquartile range of
13%–37%. While the attribution outcome could be model dependent, this downscaling approach
affords the closest means possible of a case-to-case comparison for event attribution, complementing
other statistics-based attribution studies on Harvey. Further analysis of a global climate model
tracking Harvey-like stalling systems indicates an increase in storm frequency and intensity over
southeast Texas through the mid-21st century.

1. Introduction

Hurricane Harvey made landfall in Texas as a cate-
gory 4 hurricane on the Saffir–Simpson wind scale
and caused at least 73 direct fatalities with an esti-
mated 30 000 people displaced from their homes. The
catastrophic flooding produced by Harvey destroyed
9000 homes and damaged 185 000 additional homes
(Texas Department of Public Safety). Total eco-
nomic damage from Hurricane Harvey is estimated
at between $90–$160 billion dollars (Blake and Zelin-
sky 2018). Scientific discussions soon emerged citing
that the increased sea surface temperature (SST)

in the Gulf of Mexico, the ability of the warmer
troposphere to hold more moisture, and the grow-
ing stagnation of the atmospheric circulation feasibly,
in unison, could strengthen the intensity of Har-
vey while worsening its impact (e.g. The Guardian,
8/28/2017; Potsdam Institute for Climate Impact
Research, 8/28/2017). Subsequent attribution studies
indicated an increase in extreme rainfall probability in
Texas ranging from 15% (van Oldenborgh et al 2017)
to 30% (Risser and Wehner 2017) that was linked
to anthropogenic warming in the atmosphere, with
an associated shortening of return periods for such
precipitation events (Emanuel 2017).
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2. Harvey’s meteorological history

Hurricane Harvey was first classified as a tropical
depression on 17 August at 6 Z and was upgraded to a
tropical stormthat sameday at 18 Z(Blake andZelinsky
2018). Strong northeasterly shear, dry air entrainment
and rapid storm translation speed contributed to weak-
ening, and Harvey degenerated into an open tropical
wave on 19 August while tracking through the east-
ern Caribbean. After moving across the remainder of
the Caribbean and the Yucatan Peninsula as an open
wave, Harvey encountered a much more conducive
dynamic and thermodynamic environment when it
entered the Bay of Campeche. It was upgraded to
a tropical depression on 23 August at 12 Z and a
tropical storm six hours later. Harvey tracked north-
ward across the Gulf of Mexico and rapidly intensified
in an environment of very low vertical wind shear
and ∼30 ◦C sea surface temperatures. During the 48
hour period from 24 August at 0 Z to 26 August at
0 Z, Harvey rapidly intensified by 75 knots. It made
landfall shortly thereafter between Port Aransas and
Port O’Connor, Texas as a 115 knot category 4 hur-
ricane, with a central pressure at landfall of 937 hPa
(figure 1(d)). The extreme precipitation that fell on
southeast Texas was due to Harvey’s stalling character-
istics over the next several days—caused by collapsing
steering currents. Anomalous high-pressure areas to
the northwest and northeast of Harvey resulted in
very weak steering over the storm itself (ref. steer-
ing current—figure 1(a)), and Harvey drifted very
slowly eastward and then southeastward until it became
caught up by a dipping upper-level trough, revers-
ing its track. By 28 August, Harvey had drifted back
out over the Gulf of Mexico and continued tracking
slowly east-northeastward over the extreme western
portion of the Gulf of Mexico over the next two days.
By early 30 August, Harvey made its final landfall in
CameronParish, LA as a weak tropical storm and weak-
ened as it moved further inland (Blake and Zelinsky
2018).

Harvey’s landfall ended the longest-running
United States major (category 3+) hurricane land-
fall drought on record that had been ongoing since
Hurricane Wilma in 2005 (Hart et al 2016). It was
the first land-falling category 4 hurricane to hit the
state of Texas since Hurricane Carla in 1961. Harvey’s
landfall pressure of 937 hPa was also the lowest
for any hurricane in the Gulf of Mexico hurri-
cane since Rita in 2005. Large parts of the Houston
metropolitan area received over 30 inches of rain
from Harvey, with a United States record of 60.58
inches recorded in Nederland, Texas. Harvey’s prox-
imity to the Gulf of Mexico allowed it to tap into
copious amounts of moisture that inundated the
Houston metropolitan area triggering catastrophic
flooding.

3. Data and modeling approach

3.1. Data sources
Harvey’s meteorological history was summarized from
the National Hurricane Center best track report (Blake
and Zelinsky 2018). Observed precipitation data were
derived from the 4 km NCEP Stage-IV Quantitative
Precipitation Estimates (Lin and Mitchell 2005). For
sea surface temperatures, we used the Extended Recon-
structed Sea Surface Temperature (ERSST) version
4. The NCEP-NCAR Reanalysis-1 data (R1) and the
NCEP-DOE Reanalysis 2, or R2 (Kanamitsu et al
2002) were used to depict the atmospheric variables
and to compute the trends. For future climate pro-
jections, we analyzed the Community Earth System
Model version 1 (CESM1) under the Large Ensemble
(LE) Project (Kay et al 2015). We used the LE simula-
tions for the 2006−2080 period with RCP8.5 forcing,
producing 40 members with selected daily variables at
a spatial resolution of 0.9◦ long.× 1.25◦ lat.

3.2. Regional model
Simulations using the Advanced Research Weather
Research and Forecasting (WRF-ARW) model (Ska-
marock and Klemp 2008) version 3.8 were performed
for the heavy precipitation period over southeast Texas
from 0000 UTC 26 August to 0000 UTC 30 August
2017. The model was forced by initial conditions
(IC) and lateral boundary conditions (LBC) using the
0.5◦ × 0.5◦-resolution Global Forecast System (GFS)
initial analysis. We focused on the post-1980 trend
in both tropospheric and ocean surface temperature
and conducted four experiments: (1) A control sim-
ulation forced by the original GFS analysis as IC and
LBC, and a set of ‘detrended’ simulations in which we
removed the linear trends from the IC and LBC for (2)
SST (denoted as DSST), (3) all tropospheric variables
(DAIR), and (4) both SST and tropospheric variables
(DSST+DAIR). The trends were first computed from
the R2 monthly data for each variable and then linearly
interpolated onto the GFS’s resolution and pressure
levels. Then, we subtracted these trends from the GFS’s
initial analysis (geopotential height, horizontal winds,
air temperature, etc.) before using it as IC and LBC
to drive the WRF-ARW. To evaluate model sensitiv-
ity, we also added a double-trend simulation forced
by the original LBC to which the post-1980 trends
in both the atmosphere and SST were added instead
of removed, hence ‘doubling’ the warming effect;
this is denoted as DB runs.

The assumption here is that any post-1980 trend
manifest in the troposphere and ocean surface con-
tains signals that are traceable to anthropogenic global
warming, which is supported by most attribution anal-
ysis (Weaver et al 2017). Of course, we also had to
assume that Harvey would occur anyway within the
climatically detrended environment. This ‘detrended
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Table 1. Twenty combinations of different cumulus schemes and
microphysics in WRF-ARW v3.8 (omitting references due to page
limits), which were run at three spatial resolutions of 10, 15 and
20 km.

No Cumulus schemes Microphysics

1 Kain–Fritsch Kessler
2 Betts–Miller–Janjic Kessler
3 Modifed Tiedtke Kessler
4 New GFS simplified Arakawa-Schubert Kessler
5 Kain–Fritsch Lin
6 Betts–Miller–Janjic Lin
7 Modifed Tiedtke Lin
8 New GFS simplified Arakawa-Schubert Lin
9 Kain–Fritsch WSM-3
10 Betts–Miller–Janjic WSM-3
11 Modifed Tiedtke WSM-3
12 New GFS simplified Arakawa-Schubert WSM-3
13 Kain–Fritsch Ferrier (new Eta)
14 Betts–Miller–Janjic Ferrier (new Eta)
15 Modifed Tiedtke Ferrier (new Eta)
16 New GFS simplified Arakawa-Schubert Ferrier (new Eta)
17 Kain–Fritsch Thompson
18 Betts–Miller–Janjic Thompson
19 Modifed Tiedtke Thompson
20 New GFS simplified Arakawa-Schubert Thompson

downscaling’ approach follows that used by Cho et al
(2016) for the attribution analysis of the June 2013
flood in northern India and the role climate warming
played in that event. To assess simulation uncertainty,
the WRF-ARW model was run with 60 members
in each of the four experiments; these encompass
20 combinations from four microphysics schemes
and five cumulus parameterization schemes (listed in
table 1) that were run at three spatial resolutions: 15, 20,
and 25 km (4× 5× 3 = 60 members). We used a single
domain centered around Houston, TX (30◦N, 95◦W)
with the domain outlined in figure 3. To better depict
the environmental conditions and associated changes
from the detrending, we enabled the ‘3 dimensional
analysis and surface nudging’ of WRF-ARW in all of
the experiments.

4. Results

4.1. WRF-ARM attribution
In the Gulf of Mexico (defined as 100-80◦W, 20–
30◦N), August SST has warmed by ∼0.7 ◦C since
1980 (figure 2(a) red line), while the lower tropo-
spheric temperature within the 1000−500 hPa layer has
warmed by 1.4 ◦C through 2017 (figure 2(b), based on
R1 data). Precipitable water over the Gulf of Mexico
has increased by 7.3% since 1980 with August 2017
being the highest monthly value per R1 data (fig-
ure 2(c)). In the WRF-ARW detrended experiments
(2)−(4), such post-1980 trends were removed from
all the meteorological variables in the IC and LBC.
We refer to these simply as climate trends rather than
global warming trends, since it is likely that not all
of the SST increase in the Gulf of Mexico since 1980
is due to anthropogenic causes. The Atlantic Multi-
decadal Oscillation, for example, has a pronounced
signal in the Gulf of Mexico (Enfield et al 2001), as is

evidenced in the multi-decadal variability of SST
(figure 2(a)) embedded in the long-term warming
trend. On the other hand, the warming after 1990 did
start to exceed the spread of variability as shown by the
CESM1 historical experiment ensembles in both the
SST (figure 2(d)) and lower-tropospheric temperature
(figure 2(e)), suggesting a prominent role of anthro-
pogenic warming.

Harvey produced extremely heavy rainfall in south-
east Texas during 26−29 August 2017. The four-day
average of 700 h Pa geopotential height and accumu-
lated precipitation from 26−29 August, produced by
the control simulation from the ensemble of 60 mem-
bers, are shown in figure 3(b) and are compared with
the observed precipitation and the 12 km North Amer-
ican Mesoscale model initial data in figure 3(a). The
simulated center of Harvey is very close to its actual
location but the precipitation centers are shifted about
120 km to the southwest of the observed—a persis-
tent bias. The patterns of accumulated precipitation in
DSST, DAIR, DSST+DAIR and DB (figures 3(c)−(f))
follow the slightly shifted precipitation of the control
run and are more concentrated near the hurricane cen-
ter than the observation (figure 3(a)). Nevertheless,
the metropolitan area of Houston is within the simu-
lated precipitation maxima indicating that model bias
is minimal in our assessment.

The box and whisker diagram in figure 4(a) shows
the median and spread of the 26−29 August accumu-
lated precipitation ratio compared to the observation,
averaged over southeast Texas (red box in figure 3).
Based on the median, the control precipitation ensem-
ble is only 1% smaller than the observation with an
interquartile range from −12% to +8% and we con-
sidered this a reasonable simulation. Compared to
the control run, the change in the simulated pre-
cipitation in southeast Texas was a 3% reduction in
DSST, a 17% reduction in DAIR, and a 20% reduc-
tion in DSST+DAIR with an interquartile range of
10%−35%. In the double-trend experiment (DB),
the precipitation median was increased by 9% with
the upper quartile exceeding 20%. Since Harvey lin-
gered along the Gulf Coast through 30 August, we
also tested the daily precipitation accumulated through
27−30 August (see supplemental figure S1 available at
stacks.iop.org/ERL/13/054014/mmedia). For this later
period, themedianchangewas a9%reduction inDSST,
a 22% reduction in DAIR, and a 26% reduction in
DSST+DAIR while the DB experiment increased the
precipitation by 10%—these are more robust change
than from 26−29 August. It is noteworthy in the
DSST+DAIR experiment of 27−30 August (figure S1)
that even the upper extreme was lower than the obser-
vation, implying that climate warming can induce
even more precipitation from hurricanes as strong
as Harvey.

The impact of the climate trends on Harvey’s
strength was examined in terms of the central pres-
sure difference from the observation during the 4 day
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Figure 2. Observed August (a) SST and (b) air temperature in ◦C averaged from 1000−500 hPa overlaid with linear trends, as well as
CESM LE (yellow) and observed (red) precipitable water over the Gulf of Mexico as outlined by the inset map. Black line in (c) is the
30 year running mean. (d) and (e) Same as (a) and (b) but from the CESM1 LE data.

period, which is shown in figure 4(b). Based on the
median, the control run underestimated the center
pressure by 2 hPa and DSST increased the pressure
slightly from the control runby 0.3 hPa. The differences
between control and both DAIR and DSST+DAIR
are much more pronounced, increasing the center
pressure by 5−6 hPa during 26−29 August (8 hPa
during 27−30 August; figure S1). In DB, the center
pressure was 2.5 hPa lower than the observed while
the lower quartile was 6 hPa lower, suggesting that
additional SST warming could intensify future Harvey-
like hurricanes even further. The daily breakdown
of these precipitation and central pressure compar-
isons is displayed in supplemental figure S2; the
reduction effects of DAIR and DSST+DAIR had on
Harvey’s precipitation and central pressure are consis-
tent. These results uniformly indicate the strengthening
effect of the climate trends on Harvey.

Notable is the impact of DAIR on Harvey’s
precipitation and intensity which is much stronger
than that of DSST, implying that climate trends in
the atmospheric BC are critical in influencing Harvey.
To infer the possible physical processes involved, we
examined the post-1980 trends in the 300 hPa and
900 h Pa geopotential height, shown in supplemental

figures S3(a) and S3(b). The increased upper-level
height accompanying the decreased low-level height
suggests an increase in the atmospheric thickness, likely
associated with the mid-level warming; this is shown
to be the case by a significant positive air temperature
trend at 500 hPa (figure S3(c)). Such an increase
in the atmospheric thickness and mid-tropospheric
warming coincides with the vertical structure of a
developing tropical cyclone which can be found on
www.usno.navy.mil/NOOC/nmfcph/RSS/jtwc/pubref/
References/GUIDE/chap4img/fig402.jpg and arguably
contributes to the intensification of hurricanes.

4.2. Projection of the stalled storm
What is displayed in figure 1(a) describes an encounter
between two sub-synoptic weather systems moving
in opposite directions over Texas. Such weather sys-
tems are not uncommon but are random in nature.
A case such as this fits the description of a classic
tropical-extratropical interaction that combines abun-
dant moisture carried with the low-pressure system and
a vorticity source associated with the upper trough.
Like the 2016 stalled cyclone that inundated portions
of Louisiana (figure 1(b)), the upper trough moving
through the central US induced a positive vorticity
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Figure 3. 26−29 August average of 700 hPa geopotential height (contour) and precipitation (shading) from (a) the observations of
NAM initial and Stage IV and from the ensembles of (b) control, (c) DSST, (d) DAIR, (e) DAIR+DSST, and (f) double-trend/DB
experiments. The red box is used for the domain average shown in figure 4.

tendency that intercepted the low-pressure system,
inducing vortex stretching in the lower levels (Wang
et al 2016). To provide a synoptic perspective, we
tracked similar weather systems that resembled the
unusual encounter of Harvey and the approaching
cyclone that stalled it. A similar analysis was done by
Wang et al (2016) for the August 2016 Louisiana stalled
cyclone, and the ensuing analysis follows their method.

To identify similar cases involving a stalled storm
along the Gulf Coast interacting with a dipping synop-
tic trough from the north, we conducted the analysis
based upon the 26−29 August average conditions.
We applied a spatial harmonic analysis to the four
day geopotential height at 850 hPa to filter out zonal
wavenumbers 8 and beyond, based upon the size
of landfalling Harvey (∼15◦ longitude in diameter);
this spatial filter isolated the stalled Harvey as a low-
pressure anomalywhile eliminatingambient large-scale

circulations such as the Bermuda High. We then
applied a low-pass filtering for the 300 h Pa geopoten-
tial height by retaining wavenumbers 1–8; this was to
depict the synoptic-scale flow pattern consisting of the
western ridge and the eastern trough flow pattern, like
the synoptic setting shown in figure 1(a), while remov-
ing shorter waves. This spatial filtering analysis was
applied to both the R2 and CESM1 data.

Next, to objectively assess the extent to which any
historical and simulated storm compares with Har-
vey, we adopted the ‘pattern correlation coefficient’
that calculates the Pearson product-moment coeffi-
cient of linear correlation between two variables at
corresponding locations; this method outputs a sin-
gle number (correlation coefficient denoted as �P) that
conveniently depicts the similarity between two sys-
tems. We computed �P of the R2 geopotential height
during 26−29 August with any four day mean of the
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Figure 4. Box and whisker plots of (a) the ratio of simulated precipitation and (b) minimum sea level pressure relative to the observation
with 60 ensemble members each, derived from (left to right) control, DSST, DAIR, DAIR+DSST (color filled), and DB runs. The
x-axis labels marked with ∗ indicate a significant difference from control runs at 95% confidence interval per t-test.

CESM1 LE, after applying the spatial filtering described
above to both geopotential height fields. The compari-
son was made for two domains, a synoptic one for the
upper level with low-pass filtering (ref. steering condi-
tions and stagnation associated with the low-pressure
system in question). It is expected that there would be
a range of cases from ‘somewhat similar’ to ‘almost
identical’ in the historical and simulated data; thus,
we designated a range of �P from a low bar of 0.5
(somewhat similar) as the minimal criterion to a high
bar of 0.8 (almost identical) with a 0.05 increment
for both pressure levels; this led to 49 combinations
with seven �P intervals in the upper level pairing to
seven �P intervals in the lower level. Furthermore, we
applied an intensity criterion using the minimum cen-
tral value of the 850 h Pa geopotential height. In any
4 day sequence, the daily minimum height within the
low-pressure system over southwest Texas (red box
in figure 3) had to be at least 0.6 of the value exhib-
ited during 26−29 August 2017. An evaluation made
between the reanalysis data and the CESM1 Histori-
cal LE yielded a roughly 1:2 ratio of identified cases
(not shown). The higher number of cases in CESM1 is
expected due to the low-bar criteria that includes extra
weaker cases.

The temporal distribution of the identified cases
during the 2006−2080 period is presented as a series
of box plots in figure 5(a) for the number of cases,
and in figure 5(b) for the four day accumulated pre-
cipitation (including all 49 �P combinations per year
from each member). A 15 year running mean of their
medians is also shown. There is an apparent increase
in the number of cases beginning in ∼2050, and this is
concurrent with event precipitation increases that are

projected to continue to∼2070. The Atlantic Oceanhas
been projected to feature an overall increase in intense
tropical cyclone frequency (Jones et al 2016), with
more category 4–5 storms and fewer weaker storms
(Bender et al 2010, Knutson et al 2010). A warm-
ing tropical Atlantic Ocean can induce low-pressure
anomalies over the Gulf of Mexico during late summer
(Weaver et al 2009) and subsequently enhance the
conditions for tropical cyclone formation. However,we
note that the ability of CESM1 to simulate and project
tropical cyclones is unclear, and wedo nothave a defini-
tive explanation for the subsequent decline after 2070
other than referring it to internal variability. Likewise,
the 2050−2070 increase also could be due to internal
variability, though the overall uptrends in precipita-
tion and case number from 2020 to 2080 are arguably
attributable to climate warming. Here, as was the case
in the WRF-ARW simulations, we caution that the pro-
jection results in figure 5 may differ by model and by
the physics schemes used.

5. Discussion

The reason for the increasing number of low-pressure
systems in the Gulf Coast (figure 5(a)) is manifold,
involving both natural and anthropogenic origins.
Some modeling studies project that North Atlantic
category 4−5 storms will increase (Bender et al 2010,
Knutson et al 2013) while weaker hurricanes will likely
decrease (Jones et al 2016). To our knowledge, no stud-
ies have focused specifically on future tropical cyclone
strength in the Gulf of Mexico, except for a loose com-
parison made in van der Wiel et al (2017). Given
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Figure 5. Box and whisker plots of (a) the case number accumulated and (b) event precipitation averaged over southeast Texas of
Harvey-like weather systems depicted from the CESM LE projection data from the ensemble of 40 members for each year. The medians
are connected by thick solid line by the backward 15 year moving average.

the widened increase in the number of cases (figure
5(a)) between low-bar criteria and high-bar criteria, it
is possible that the increase in storm precipitation is
mainly driven by weaker tropical cyclones in the Gulf
of Mexico.

High moisture content in the atmosphere plays
an important role in strong hurricanes like Harvey as
well as the storms leading to the 2016 Louisiana flood
(Wang et al 2016). Precipitable water in the Gulf
of Mexico has increased considerably and will only
increase in a warming climate; this was both observed
and projected by CESM1 as shown in figure 2(c).
Consequently, the prospect of future tropical cyclones
resulting in extreme precipitation is a scenario that the
Gulf Coast and coastal metropolitan areas will likely
face in the future, and the simulation results of fig-
ure 5(b) also suggest it. Nonetheless, recent climate
projection studies (Gao et al 2012, Janssen et al 2014,
Wuebbles et al 2014) did not underscore the Gulf States
as a hotspot for a significant increase in summertime
extreme precipitation. High-emission climate projec-
tions showed only a weak increase in the maximum
daily precipitation in Texas and Louisiana, consider-
ably less than the northeast US and Midwest (Wuebbles
et al 2014); this apparent discrepancy between the
two projections requires caution in interpretation.

Conceptually, our approach that constrains the
boundary and initial conditions of an atmospheric
model used to create a synoptic event is in line with
the emerging ‘storyline approach’ of attribution anal-
ysis (Zappa and Shepherd 2017). When it comes to
attribution analysis, the mere use of observational
data and model free runs is not adequate enough
to reach robust conclusions. Global model free runs
may approximate a historical hurricane, e.g. as in
the Hurricane Sandy attribution (Lackmann 2015),

but they do not necessarily replicate the environmen-
tal conditions associated with the particular storm.
Using the dynamical downscaling approach forced
by observed IC and LBC provides the closest possi-
ble influences of the true environmental conditions at
the time of a mesoscale or weather system of interest.
While the simulations suggest that Harvey’s precipita-
tion over southeast Texas as well as its intensity could
have been enhanced by climate warming trends, we
acknowledge that the estimate can change depending
on a number of factors, such as different models used
and their settings, different IC and LBC sources, and
choice of trend periods removed.

6. Conclusion

While the Gulf Coast is no stranger to strong hur-
ricanes, a tropical cyclone that stalls for days over a
major metropolitan area and results in excessive rainfall
is a recipe for disaster. Quantitative attribution con-
ducted by WRF-ARM downscaling simulations, with
the climate trends removed from the IC and LBC, sug-
gest that post-1980 warming in both the ocean and
atmosphere likely resulted in a ∼20% increase of the
accumulated event precipitation with an interquar-
tile range of 13%−37%. Preliminary CESM1 analysis
projecting stalled storms over southwest Texas, in con-
junctionwith recent analyses of a similarly stalled storm
in Louisiana (van der Wiel et al 2017, Wang et al
2016), signifies an increasing trend in the number of
cases that have similar synoptic patterns and associated
stationarity to that of Harvey. Precipitation associ-
ated with these stalled storms was also projected to
increase, despite CESM1’s relatively coarse resolution
prevents a more quantitative assessment.
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The method demonstrated here echoes one of the
alternative ways outlined in Trenberth et al (2015) to
resolve the challenge facing attribution analysis from
a physical standpoint, that is, questioning whether
observed changes in the thermodynamic state affected
the impact of a particular event. We note that the
post-1980 warming is not simply due to anthro-
pogenic causes but also likely involves natural climate
variability and random weather systems. Risser and
Wehner (2017) conducted extreme value analysis using
CO2 concentration and annually-averaged El Niño–
Southern Oscillation (ENSO) as covariates and found
that human-induced climate change likely increased
Harvey’s precipitation in the Houston metropolitan
area by 40% with a lower bound estimate of 18%.
We note, however, similarly to what they acknowl-
edged in their paper, that other natural modes of
variability such as the AMO may be responsible for
some of the increase in SST in the Gulf of Mex-
ico. In the context of event attribution, our regional
downscaling attribution approach went one step fur-
ther in conducting a more direct, ‘apples-to-apples’
comparison of Harvey’s extreme precipitation when
compared to the value-based (not event-specific) sta-
tistical analysis or return period analysis that relies
on capturing similar ‘Harvey-like’ events, without
dealing with the environment factors and synoptic set-
tings accompanying the particular event of interest.
In general, our result is in agreement with that of
van Oldenborgh et al (2017) and Emanuel (2017) in
that anthropogenic warming in the atmosphere con-
tributed to the rainfall intensity of Harvey and may
lead to more frequent similar storms in the future.

The estimate from the present downscaling attri-
bution is by no means absolute and attributing
convectively-driven extreme precipitation events is
challenging. Our purpose here is not necessarily to
provide a definitive number but rather to propose a
way to provide a more direct, quantitative measure
for conducting extreme precipitation event attribution.
For a better representation of storm-scale structures in
organized convective systems, the US Climate Vari-
ability and Predictability Program (CLIVAR) suggest
future research to consider utilizing convective per-
mitting modeling that shows superior performance in
warm-seasonconvection (US_CLIVAR2017).We thus
call for a careful reevaluation of the projection of both
tropical cyclones and other convective systems that may
become more stalled in the future and produce more
rainfall.
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