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ABSTRACT

The Tropical Meteorology Project at Colorado State University currently issues seasonal forecasts for

Atlantic basin hurricane activity in early April, June, and August. This paper examines the potential for

issuing an additional seasonal forecast on 1 July, using a two-predictor forecast model. The two predictors are

selected from the ECMWF Interim Re-Analysis (ERA-Interim) and explain over 60% of the cross-validated

variance in post–30 June accumulated cyclone energy over the hindcast period from 1979 to 2012. The two

predictors selected areMay–June-averaged 2-m temperatures in the eastern tropical and subtropical Atlantic

along with May–June 200-mb zonal winds in the tropical Indian Ocean. The May–June-averaged 2-m tem-

peratures are shown to strongly correlate with August–October 2-m temperatures in the main development

region, while the 200-mb zonal wind flow over the tropical Indian Ocean is shown to strongly correlate with

El Ni~no–SouthernOscillation. In addition, each predictor is shown to correlate significantly with accumulated

cyclone energy, both during the hindcast period of 1979–2012 and with an independent period from 1948

to 1978.

1. Introduction

The Tropical Meteorology Project (TMP) at Colo-

rado State University has issued seasonal hurricane

forecasts in early June and early August since 1984

(Gray 1984; Gray et al. 1993, 1994), and an early season

forecast has been issued in early April since 1995

(Klotzbach and Gray 2013). The early June and early

August forecasts have shown skill when compared with

several no-skill metrics (Klotzbach andGray 2009), with

the early April forecast showing less skill (Klotzbach

and Gray 2013). The statistical modeling behind the

TMP’s forecasts has undergone revisions in recent years

(e.g., Klotzbach 2011), with the newly developed early

August seasonal forecast explaining approximately 80%

of the cross-validated hindcast variance for integrated

seasonal metrics such as net tropical cyclone (NTC)

activity (Gray et al. 1994) and accumulated cyclone

energy (ACE; Bell et al. 2000) during the most recent

thirty years. Given the improvement in real-time pre-

diction skill from early June to early August (Klotzbach

andGray 2009), development of an intermediate forecast

model issued in early July seems like a logical extension

of previous work.

From the mid-1980s to the late 1990s, the TMP uti-

lized primarily weather station and radiosonde data

(e.g., Gray et al. 1994). During the past 10–15 yr, the TMP

has utilized the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis dataset as its predominant

source for statistical model development (Kistler et al.

2001). In recent years, the Climate Forecast System Re-

analysis (Saha et al. 2010) and the European Centre for

Medium-Range Weather Forecasts (ECMWF) Interim

Re-Analysis (ERA-Interim; Dee et al. 2011) have been

developed and continue to be updated in near–real time.

These reanalysis products likely provide a more realistic

estimate of the actual conditions observed for a particular

part of the globe than earlier reanalysis products because

of the improved resolution and data assimilation tech-

niques. The ERA-Interim product will be utilized in

the development of this early July statistically based sea-

sonal forecast scheme. Section 2 discusses the data utilized

to develop the forecast, while section 3 describes the

predictor selection process and evaluates the hindcast skill

of the predictors over the developmental period from

1979 to 2012, along with an evaluation of skill during an

earlier period from 1948 to 1978. Section 4 discusses the

physical links between the two predictors and Atlantic
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basin tropical cyclone (TC) activity. Section 5 summarizes

the manuscript and provides some ideas for future work.

2. Data

All tropical cyclone (TC) statistics are calculated from

the National Hurricane Center’s (NHC) second gener-

ation best-track data, which is available online (http://

www.nhc.noaa.gov/data/#hurdat; see Landsea and Franklin

2013). This file provides estimates of 1-min maximum

sustained wind and central pressure for every 6-h period

where the NHC deems that a TC is present. ACE was

calculated by utilizing the approach outlined in Bell et al.

(2000) and is defined as the sum of the maximum 1-min

sustained wind speed squared for each 6-hourly interval

when the NHC declares a tropical or subtropical cyclone

exists in theAtlantic basin. Seasonal ACE is an integrated

measure that approximates the kinetic energy generated

by all TCs in the Atlantic basin for a particular season.

While ACE is likely reliable since 1970, there are

significant questions about data quality in the National

Oceanic and Atmospheric Administration’s (NOAA)

revised Atlantic hurricane database (HURDAT2) prior

to that time period. There was likely an overestimation

of major hurricane intensity from the 1940s through the

1960s (Landsea 1993). These overestimations are cur-

rently being addressed by the Atlantic Hurricane Da-

tabase Reanalysis Project (Hagen et al. 2012); however,

at this point, only years up to 1945 have been reanalyzed.

While these overestimations likely led to inflated ACE

values during the 1940s through the 1960s, TC intensity

in the eastern part of the Atlantic basin may have been

underestimated prior to the advent of continuous sat-

ellite monitoring in the mid-1960s. Several approaches

have been outlined to account for these underestimates

for both named storms (Vecchi and Knutson 2008) and

hurricanes (Vecchi and Knutson 2011), but no approach

has yet been outlined to account for underestimates in

ACE. The overestimation of major hurricane ACE and

underestimation of eastern Atlantic ACE may result in

somewhat of an overall cancellation effect.

The ERA-Interim product (Dee et al. 2011) is utilized

as the dataset for predictor selection. This reanalysis is

performed on a finer-scale grid (1.58 latitude–longitude)
than the original NCEP–NCAR reanalysis (2.58 latitude–
longitude) and utilizes an advanced four-dimensional

variational data assimilation scheme compared with a

three-dimensional data assimilation scheme for the

NCEP–NCAR reanalysis. The ERA-Interim product is

available from 1979 to the near present.

ERA-Interim data are updated with an approxi-

mately 4-month lag to real time, so estimates of re-

analysis values must be utilized for real-time prediction.

Real-time ECMWF operational data are available for

research purposes from the The Observing System

Research and Predictability Experiment (THORPEX)

Interactive Grand Global Ensemble (TIGGE) website

(http://apps.ecmwf.int/datasets/data/tigge/?levtype5pl&

type5fc). These operational data are available begin-

ning in October 2006. To estimate reanalysis predictor

values in real time, operational values are calculated and

are then converted to ‘‘reanalysis’’ values. This conver-

sion involves calculating standardized anomalies of the

operational values from the 2007–12 average and then

generating reanalysis values by multiplying the opera-

tional standardized anomalies by the 2007–12 reanalysis

standard deviation and adding in the 2007–12 reanalysis

average.

Four fields are analyzed for predictors: 2-m tempera-

ture [2mT, which is closely correlated with sea sur-

face temperatures (SST) over water], sea level pressure

(SLP), 850-mb zonal wind (U850), and 200-mb zonal

wind (U200). All four of these fields have been shown in

previous research (Klotzbach 2011) to significantly im-

pact Atlantic basin TC activity. The predictors are se-

lected based on ERA-Interim data from 1979 to 2012

and are then tested using the NCEP–NCAR reanalysis

from 1948 to 1978.

All predictor calculations were made utilizing the

Climate Explorer website (http://climexp.knmi.nl/).

3. July seasonal forecast model development

Correlation maps were constructed between the post–

30 June ACE and the May–June large-scale fields dis-

cussed in the previous section (e.g., 2mT, SLP, U850 and

U200). Figure 1 displays a correlation map between

May–June 2mT and post–30 June ACE. The positive

correlation outlined in the box in the eastern Atlantic

was selected as the first predictor in the forecast scheme

(e.g., May–June-averaged 2mT over 108–508N, 308–108W).

FIG. 1. Correlation map between post–30 June ACE and May–

June-averaged 2mT for the years 1979–2012. The area enclosed by

the black box is predictor 1 in the forecast scheme.

116 WEATHER AND FORECAST ING VOLUME 29

http://www.nhc.noaa.gov/data/#hurdat
http://www.nhc.noaa.gov/data/#hurdat
http://apps.ecmwf.int/datasets/data/tigge/?levtype=pl&type=fc
http://apps.ecmwf.int/datasets/data/tigge/?levtype=pl&type=fc
http://apps.ecmwf.int/datasets/data/tigge/?levtype=pl&type=fc
http://apps.ecmwf.int/datasets/data/tigge/?levtype=pl&type=fc
http://climexp.knmi.nl/


Following the selection of this predictor, a prelim-

inary prediction was run and a residual time series

(e.g., observed minus hindcast) was created. The re-

sidual map was compared with the original correlation

map to find areas that significantly correlated both with

Atlantic basin ACE as well as with the residual ACE

remaining after the eastern Atlantic 2mT predictor was

considered (Fig. 2). Tropical Indian Ocean U200 (108S–
58N, 608–908E) during the months of May and June was

selected as a secondary predictor. After this predictor

was selected, no other large-scale areas showed signifi-

cant correlations with both basin-wide and residual

ACE and, consequently, the forecast model was com-

pleted with two predictors.

The linear correlation between each predictor and

ACE is significant at the 5% level when using a two-

tailed Student’s t test and assuming that each year rep-

resents an individual degree of freedom over both the

dependent period from 1979 to 2012 and the earlier

period from 1948 to 1978. Predictor 1 correlates with

ACE at 0.71 from 1979 to 2012, while the correlation

from 1948 to 1978 is 0.49. Predictor 2 correlates with

ACE at 20.49 from 1979 to 2012, while the correlation

from 1948 to 1978 is 20.39.

Over the 2007–12 period, the operational and re-

analysis values of predictor 1 correlate at greater than

0.99, while the operational and reanalysis values of pre-

dictor 2 correlate at 0.92, indicating the utility of the

TIGGE ECMWF operational dataset for estimating

predictor values in real time.

The two predictors are combined using a linear re-

gression approach.When this is done, and the year being

hindcast is left out of the equation development (typi-

cally referred to as jackknifing or cross validation)

(Efron and Tibshirani 1993), the model correlates with

observed post–30 June ACE at 0.80. Figure 3 displays

the year-by-year cross-validated hindcast from 1979 to

2012. For the period from 2007 to 2012, both hindcasts

fromERA-Interim as well as what hindcasts would have

been from the ECMWF operational dataset are dis-

played. The correlation between the hindcasts based on

the ERA-Interim data and the ECMWF operational

data from TIGGE is 0.95.

When the two predictors are combined for 1948–78

using the equations developed over the 1979–2012 pe-

riod, the correlation is 0.50. This correlation degradation

is likely a combination of observational issues with the

earlier-period NCEP–NCAR reanalysis data as well as

the observational issues with ACE discussed previously.

Upper-level zonal winds prior to the International

Geophysical Year in 1957 were infrequently observed

(Kistler et al. 2001) and consequently are subject to

larger errors than in more recent years. In addition,

there is the potential that the relationship between the

two predictors and ACE was somewhat different during

FIG. 2. Correlation map between (a) post–30 June ACE and

May–June-averaged U200 for the years 1979–2012 and (b) post–30

June ACE residual after inclusion of predictor 1 and May–June-

averaged U200 for the years 1979–2012. The area enclosed by the

black box is predictor 2 in the forecast scheme.

FIG. 3. Observed (blue line) vs cross-validated hindcast (pink

line) post–30 June ACE. The dotted green line represents the

hindcast values based upon ECMWF operational data over the

period from 2007 to 2012. The correlation between observations

and hindcasts is 0.80.
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the earlier period from 1948 to 1978 than during the

more recent period from 1979 to 2012.

As was done in Klotzbach (2011), the model was

tested against several no-skill metrics over the de-

velopmental period from 1979 to 2012 as well as the

independent period from 1948 to 1978. Equations were

rederived over the independent period, since the model

based on equations developed over 1979–2012 signifi-

cantly overestimated ACE during the earlier period,

potentially resulting from underestimates in observed

ACE in the earlier period. The various no-skill metrics

examined for this analysis were the 1979–2012 clima-

tology, the previous 3-, 5-, and 10-yr means, the latter of

which is currently the recommended World Meteoro-

logical Organization (WMO) no-skill metric (WMO

2002). Table 1 displays a variety of skill metrics and

compares the hindcasts over both periods with these

metrics. The same no-skill metrics were examined for

1948–78, except using the 1948–1978 climatology. The

mean absolute error (MAE; defined as the absolute value

of the difference between observation and hindcast) as well

as themean squared absolute error (MSE; the square of the

difference between the observation and the hindcast) were

evaluated. The model shows improved skill over all of the

no-skill metrics for both time periods, although the skill is

significantly improved from 1979 to 2012.

Tropical StormRisk (TSR; http://www.tropicalstormrisk.

com) also issues real-time seasonal hurricane forecasts of

Atlantic basin ACE from early July (Saunders and Lea

2013). Their forecasts improve upon the MSE of the

previous 10-yr mean by 46% over the period from 1980

to 2012, using a replicated real-time forecast. Effec-

tively, this uses equations developed on data from 1948

to 1979 to forecast 1980, from 1948 to 1980 to forecast

1981, etc. The forecast outlined here results in a 49%

improvement inMSE over 1980–2012, indicating a slight

improvement in skill over that documented by TSR.

4. Physical relationships between predictors and
Atlantic basin TC activity

Both of the predictors that are listed in Table 1 dis-

played significant correlations with ACE, both over the

periods 1948–78 and 1979–2012, indicating that they

likely modulate physical features during the peak of the

TC season that drive fluctuations in Atlantic activity.

This section examines each predictor’s correlations with

large-scale fields during the peak of the Atlantic hurri-

cane season from August to October.

a. Predictor 1: May–June 2mT (108–508N, 308–108W)

SSTs have been analyzed in a similar region for pre-

vious August seasonal forecast models (Klotzbach 2007;

Klotzbach 2011). Figure 4 displays the correlation be-

tween predictor 1 and 2mT, U200, U850, and SLP during

August–October. The strongest correlation skill be-

tween predictor 1 and 2mT is located directly over the

Atlantic main development region (MDR; 7.58–22.58N,

758–208W; see Fig. 4a). The correlation between pre-

dictor 1 and the Atlantic MDR 2-m temperature aver-

aged over August–October is 0.79, explaining over 60%

of the variance. Smirnov and Vimont (2012) have shown

that this should be expected, as SST anomalies tend to

propagate equatorward and westward with time, due

primarily to wind–evaporation–SST feedback mecha-

nisms. Anomalously warm 2mT in the eastern tropical

and subtropical Atlantic are also strongly correlated

with anomalous upper-level easterlies (Fig. 4b), anomalous

TABLE 1. Summary statistics describing the skill of the 1948–78 and 1979–2012 periods when comparing hindcast skill with climatology,

and the previous 3-, 5- and 10-yr means. Statistics calculated are correlation coefficient, Spearman rank correlation coefficient, MAE,

MSE, the percent improvement of the hindcast vs the no-skill metric forMAE, and the percent improvement of the hindcast vs the no-skill

metric for MSE.

Correlation

Spearman

rank correlation MAE MSE

Improvement of

hindcast vs MAE (%)

Improvement of

hindcast vs MSE (%)

1948–78

Hindcast 0.50 0.56 37 2118 — —

Climatology — — 40 2843 8 26

3-yr mean 0.14 0.22 43 3252 14 35

5-yr mean 0.10 0.17 43 3187 13 34

10-yr mean 20.07 20.04 44 3273 16 35

1979–2012

Hindcast 0.80 0.80 28 1337 — —

Climatology — — 50 3694 45 64

3-yr mean 0.13 0.15 57 4769 51 72

5-yr mean 0.22 0.22 52 3956 47 66

10-yr mean 0.34 0.26 48 3447 42 61
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lower-level westerlies (Fig. 4c), and reduced SLP

(Fig. 4d). These wind anomalies counteract the pre-

vailing upper-level westerlies and lower-level easterlies

that predominate in the tropical Atlantic, consequently

resulting in weaker vertical wind shear, which has been

shown in many studies to be favorable for an active

Atlantic basin hurricane season (e.g., Gray 1984).

Anomalously low SLPs throughout the tropical Atlantic

have also been documented in previous research to be

associated with active Atlantic hurricane seasons (Knaff

1997; Klotzbach 2007).

b. Predictor 2: May–June 200-mb zonal wind
(108S–58N, 608–908E)

Upper-level easterly anomalies in the equatorial In-

dian Ocean during May–June are associated with an

active onset of the Indian monsoon (Webster and Yang

1992). Anomalous easterly flow over the Indian Ocean

tends to be associated with an active overall Indian–

Asian monsoon system as well, which is typically

experienced during La Ni~na events. Figure 5a displays

the strong negative correlation between predictor 2 and

eastern tropical Pacific 2mT, indicating that upper-level

easterly anomalies in the equatorial Indian Ocean are

associated with colder eastern tropical Pacific tempera-

tures. Note that predictor 2’s values have been inverted

for easy comparison with predictor 1. In addition, as

would be expected given the correlation with ENSO,

anomalous upper-level easterly flow is generally expe-

rienced across the Caribbean (e.g., Gray 1984) and the

tropical Atlantic when predictor 2 is anomalously out of

the east (Fig. 5b). Correlations between predictor 2 and

the low-level flow along with SLP are mostly in-

significant across the tropical Atlantic (Figs. 5c and 5d).

The positive correlation with SLP across the tropical

eastern Pacific and negative correlation with SLP

across the tropical western Pacific is to be expected,

given the positive Southern Oscillation index that

typically exists when La Ni~na conditions are present

(Walker 1923).

FIG. 4. Correlations between predictor 1 [May–June 2mT (108–
508N, 308–108W)] and August–October (a) 2mT, (b)U200, (c)U850,

and (d) SLP.

FIG. 5. As in Fig. 4, but for predictor 2 [May–June U200 (108S–
58N, 608–908E)]. The sign of the predictor has been multiplied by

21 to allow for easy comparison with Fig. 4.
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In general, predictor 1 correlates very strongly with

Atlantic MDR SSTs, which are critical for Atlantic TC

development (Saunders and Lea 2008). Predictor 2

correlates very strongly with ENSO conditions, which

through their teleconnected impacts on upper-level

winds (Gray 1984) and upper-tropospheric temperature

and column stability (Tang and Neelin 2004) also sig-

nificantly impact Atlantic TC activity.

5. Conclusions and future work

This manuscript documents a first attempt by the

TMP at issuing a 1 July seasonal forecast. By using

a simple two-predictor model evaluating 2-m tempera-

ture in the eastern Atlantic along with 200-mb zonal

wind over the tropical Indian Ocean, over 60% of the

cross-validated variability in post–30 JuneAtlanticACE

can be explained over the period 1979–2012. The pre-

dictors also show robust correlations with large-scale

physical features known to impact Atlantic TCs during

the peak of the Atlantic hurricane season from August

to October. Positive values of predictor 1 are closely

coupled with local anomalous warming in the tropical

Atlantic. Negative values of predictor 2 are shown to

correlate strongly with La Ni~na conditions, which then

impact the Atlantic through reductions in upper-level

westerlies, thereby reducing the vertical wind shear.

DelSole and Shukla (2009) provided a criticism of

the methodology utilized by earlier forecasts issued by

the TMP. Their criticismwas primarily focused upon the

screening methodology that was utilized, and the over-

fitting of the forecast model. When predictors are se-

lected based upon the full time series, cross validation

does not provide an accurate view of what kind of skill

can be expected in real-time prediction.

Since the analysis by DelSole and Shukla (2009)

(which utilized data through the 2007 Atlantic hurricane

seasonal forecast), the TMP has extensively redone its

entire forecast models, taking into account many of the

criticisms outlined in their manuscript. Earlier seasonal

forecast models used 6–10 predictors, while new models

use 2–4 predictors. In addition, predictors must continue

to show significant correlations with the predictand (in

this case ACE) over an independent period, to prevent

the screening issues discussed in DelSole and Shukla

(2009). In the prediction model outlined here, both

predictors showed significant correlations over the 1948–

78 time period. The strong physical linkages between

each predictor and TC activity are also stressed, to make

sure that the relevance between each predictor is strongly

tied to hurricane activity individually. These more strin-

gent predictor selection criteria have likely led to the

improvements in real-time forecast skill that have been

documented in the TMP’s real-time forecasts from 2008

to 2012 (real-time verifications available online at http://

tropical.atmos.colostate.edu/Includes/Documents/

Publications/forecast_verifications.xls).

In the future, the author plans to revise the early June

and early April seasonal forecast schemes using ERA-

Interim products. An interim forecast model issued in

early May will also be constructed. It is hoped that using

more recent period data and a more reliable reanalysis

product will increase the hindcast, as well as real-time

forecast, skill of all of the TMP’s seasonal predictions.
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