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1 Executive Summary 

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the 
algorithms that are used within the CCI Soil Moisture ECV production system. The ECV 
production system has initially been developed within CCI Phase 1 and is continuously being 
updated within phase 2 to reflect the current state of the science driving the system. The ATBD 
is, by its nature, rather in-depth, and in order to facilitate frequent updates, and to provide a 
more manageable document to the reader the ATBD is provided as four distinct documents. 
These documents consist of an ATBD for the active retrieval, an ATBD for the passive retrieval 
and an ATBD for the merging process. An overriding document (part 1) provides an executive 
summary sets the ATBD documents within framework for the CCI project and the ECV 
production system.  

Section 5 of this document outlines the processing steps involved in the active product 
retrieval. The algorithms that underlie these processing steps are presented in Section 6 and 
form the basis of the change detection model developed at the Vienna University of 
Technology (TU Wien). Section 7 identifies the shortcomings of the active product retrieval, 
and the scientific advances that are currently being investigated to address these are 
described in Section 8. These include the latest results from research into level-1 inter-
calibration biases between scatterometer missions, improved vegetation modelling, and the 
improved resampling of scatterometer measurements to the Discrete Global Grid (DGG). 
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2 Change log 

2.1 Current version 04.4 

This document forms deliverable 2.1 of CCI Phase 2 and provides an update for the ESA CCI 
SM 04.4 product released on 12th November 2018. At version 04.4, there are no changes to 
the algorithm for generating the active L2 data product. 

2.2 Pre v04.4 

The dataset  and corresponding ATBD versions are summarised in the executive summary of 
the ATBD. Further information can be found in the changelog provided with the data and the 
relevant documentation. 
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3 Introduction 

3.1 Purpose of the Document  

The Algorithm Theoretical Baseline Document (ATBD) is intended to provide a detailed 
description of the scientific background and theoretical justification for the algorithms used 
to produce the ECV soil moisture data sets. Furthermore, it describes the scientific advances 
and algorithmic improvements which are made within the CCI project.  

3.2 Targeted Audience 

The primary audience for this document are: 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 
moisture from active microwave data sets. 

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in-
depth understanding of the algorithms and sources of error. 
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5 Methodological description on the retrieval of soil moisture from 
active microwave sensors 

5.1 Principle of the products 

The concept of the Level 2 surface soil moisture retrieval model developed at the Vienna 
University of Technology (TU Wien) for use with C-band scatterometers is a physically 
motivated change detection method. The first realisation of the concept was based on  
ERS 1/2 wind scatterometer (AMI-WS) data sets (Wagner et al. 1999a; Wagner et al. 1999b; 
Wagner et al. 1999c) and later the approach was successfully transferred to the Advanced 
Scatterometer (ASCAT) data on board the METOP-A satellite (Bartalis et al. 2007; Naeimi et al. 
2008; Naeimi et al. 2009). The soil moisture retrieval algorithm is implemented within a 
software package called Soil Water Retrieval Package (WARP). 

The TU Wien change detection algorithm is, from a mathematical point of view, less complex 
than a radiative transfer model and can be inverted analytically. Therefore soil moisture can 
be estimated directly from the scatterometer measurements without the need for iterative 
adjustment process. Because of this it is also quite straight forward to perform an error 
propagation to estimate the retrieval error for each land surface pixel (Naeimi et al. 2009). A 
disadvantage of the change detection model is that it is a lumped representation of the 
measurement process. Therefore, the different contributions to the observed total 
backscatter from the soil, vegetation, and soil-vegetation-interaction effects cannot be 
separated as would be the case for a radiative transfer modelling approach. It also means that 
it is necessary to calibrate its model parameters using long backscatter time series to implicitly 
account for variations in land cover, surface roughness, and many other effects. The basic 
assumptions of the TU Wien change detection model are: 

1. The relationship between the backscattering coefficient 𝜎𝜎0 expressed in decibels (dB) 
and the surface soil moisture content is linear. 

2. The backscattering coefficient 𝜎𝜎0  depends strongly on the incidence angle 𝜃𝜃 . The 
relationship 𝜎𝜎0 - 𝜃𝜃 is characteristic of the roughness conditions and the land cover, but 
is not affected by changes in the soil moisture content. 

3. At the spatial scale of the scatterometer measurements roughness and land cover are 
stable in time. 

4. When vegetation grows, backscatter may decrease or increase, depending on whether 
the attenuation of the soil contribution is more important than the enhanced 
contribution from the vegetation canopy, or vice versa. Because the relative 
magnitude of these effects depends upon the incidence angle, the curve 𝜎𝜎0  - 𝜃𝜃 
changes with vegetation phenology over the year. This effect can be exploited to 
correct for the impact of vegetation phenology in the soil moisture retrieval by 
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assuming that there are distinct incidence angles 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑  and 𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤 , where the 
backscattering coefficient 𝜎𝜎0  is stable despite seasonal changes in above ground 
vegetation biomass for dry and wet conditions. 

5. Vegetation phenology influences 𝜎𝜎0 on a seasonal scale. Local short-term fluctuations 
are suppressed at the scale of the scatterometer measurements. 

Overall, the results obtained in experimental validation studies, for both ERS-1/2 AMI-WS and 
METOP-A ASCAT, have shown that these assumptions are in general appropriate. Also, they 
have received support from theoretical studies. For example, the linearity assumption (point 
1 above) has been held to be in contradiction to the Integral Equation Model (IEM) that 
suggests a non-linear relationship. But, as recently demonstrated by Zribi (personal 
communication), this contradiction disappears when IEM is coupled with an air-soil transition 
model as first proposed for the SMOS retrieval (Schneeberger et al. 2004). With respect to 
seasonal vegetation effects, a recent study by Crow et al. (2010) shows that the change 
detection model is better able to describe the soil moisture retrieval skill over a larger range 
of incidence angles than the widely used Cloud Model (Attema and Ulaby 1978) in 
combination with the IEM (Fung 1994; Hsieh et al. 1997). But of course, there are instances 
where one or more of these assumptions break down. Currently the biggest problem appears 
to be that under extremely dry conditions, as might be found in deserts or semi-arid 
environments during the dry season, backscatter decreases when the soil becomes slightly 
wet. 

5.2 Overview of processing steps 

In the software package WARP the TU Wien change detection model is applied to  
ERS 1/2 AMI-WS and METOP-A ASCAT measurements via a sequence of processing steps (see 
Figure 1 for an overview): 

1. Resampling of data: The scatterometer measurements in orbit geometry are 
resampled to a fixed Discrete Global Grid (DGG), called WARP 5 grid. 

2. Sensor intra-calibration: Resampled backscatter values are calibrated to a defined 
calibration reference, in order to correct for temporal emerging variations of the  𝜎𝜎0 
backscatter coefficient caused by instrument related anomalies. 

3. Azimuthal normalisation: Backscatter values are normalised in terms of their 
acquisition azimuth angle, based on look-up tables with long-term mean values. 

4. Estimate noise of 𝝈𝝈𝟎𝟎: Estimate the standard deviation (ESD) of 𝜎𝜎0 due to instrument 
noise, speckle and residual azimuthal effects based on the measurements of the fore- 
and aft antennas. 

5. Model incidence angle dependency: Determine the mean annual cycle of the 
incidence angle behaviour of 𝜎𝜎0  by making use of the fact that the scatterometer 
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provides instantaneous measurements at two different incidence angles. The 
incidence angle dependency is described by a second order polynomial determined by 
the slope and the curvature. The slope and the curvature show a distinct annual cycle, 
determined by vegetation growth and decay. Slope and curvature parameters are 
determined by fitting a first degree polynomial to each group of local slope values. The 
results are the first and second derivatives of backscatter at 40° for each day of year. 
The final slope and curvature values are the result of averaging these derivative values 
over several periods with different duration (14-84 days). Corresponding noise values 
are also calculated. 

6. Normalisation of backscatter measurements: Extrapolate all 𝜎𝜎0 taken over the entire 
incidence angle range to a reference angle of 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 40° and calculate the average 
𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� based on the backscatter triplet. 
 

 

Figure 1: Overview of the processing steps in WARP 5.6 
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7. Estimate noise of 𝝈𝝈𝟎𝟎�𝜽𝜽𝒓𝒓𝒓𝒓𝒓𝒓�: Based on the rules of error propagation the estimated 
standard deviation of 𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� is calculated. 

8. Detect frost and snow conditions: Use decision tree trained by historical temperature 
data to detect freeze/thawing events 

9. Determine dry and wet references: After 𝜎𝜎0 has been normalised with respect to the 
incidence angle, vegetation phenology effects and 𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�  outliers have been 
removed, dry and wet soil backscatter reference curves, 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  and 
𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  are determined. These maximum and minimum 𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�  are 
determined by statistical methods of noise analysis. 

10. Wet reference correction: In dry climates the wet reference estimation can be biased 
given that there may never be enough rainfall to thoroughly wet the soil surface layer 
(Wagner and Scipal 2000). To correct biased 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  in such dry climates, 
Koeppen climate classification data (Kottek et al. 2006) is used in conjunction with the 
sensitivity to soil moisture (defined in turn as the difference between the dry and wet 
parameters derived in the previous step). 

11. Calculate surface soil moisture: Calculate the surface soil moisture by comparing 
𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� to the seasonally varying dry and wet reference values. 

12. Estimate retrieval error of surface soil moisture: Calculate the estimated standard 
deviation of the surface soil moisture by rules of error propagation. 
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6 Description of Algorithms 

This section presents the algorithms that underlie the processing steps presented in section 
5.2, and forms the core of this algorithm theoretical baseline document (ATBD). 

6.1 Resampling 

The task of resampling is to interpolate L1b Scatterometer measurements, given in the orbit 
grid, to a fixed Earth grid. For this purpose a Discrete Global Grid (DGG) has been developed 
by TU Wien and is called WARP 5 grid. The WARP 5 grid contains 3264391 grid points with an 
equal spacing of 12.5 km in longitude and latitude. Each of the grid points is identified by a 
unique grid point index (GPI). The result of the resampling is a time series of interpolated 
measurements at each GPI over land (Figure 2).  

 

Figure 2: Orbit grid (dots) and WARP 5 grid (crosses) over Italy. 

The geometry of the AMI-WS and ASCAT instruments is described in Figure 3 where the three 
satellite beams are indicated as fore, mid and aft beam. For each point in the orbit grid, all 
GPIs within an 18 km radius are determined by a nearest neighbour search, from which the 
interpolated values for the backscatter sigma naught σ0 for each of the three beams (and 
other attributes such as incidence angle) are obtained as weighted average, with weighting 
coefficients computed according to the Hamming window function: 

 𝑤𝑤(𝑥𝑥) = 0.54 + 0.46 cos �2𝜋𝜋
𝛿𝛿𝛿𝛿
𝑟𝑟
� Eqn. 6-1 

whereby 𝛿𝛿𝛿𝛿 denotes the distance between the actual GPI and the orbit grid point, and 𝑟𝑟 the 
diameter of the search radius. We chose the Hamming window function for interpolation, 
because it is also used in the creation of the L1b product. Also two other window functions 
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are currently supported, namely Lanczos and Inverse Distance Weighting, but the relative 
merits of the respective functions have yet to be evaluated.  

The result of the resampling step is, for each land GPI, a time series 𝑡𝑡𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔, containing 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 
records 

 𝑡𝑡𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔[𝑖𝑖] =  𝜎𝜎𝑖𝑖,𝑏𝑏0 ,𝜃𝜃𝑖𝑖,𝑏𝑏 ,φ𝑖𝑖,𝑏𝑏 , 𝑡𝑡𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤  𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 Eqn. 6-2 

each consisting of a time stamp 𝑡𝑡𝑖𝑖  and measurement triples for backscatter 𝜎𝜎𝑖𝑖,𝑏𝑏0 , incidence 
angle  𝜃𝜃𝑖𝑖,𝑏𝑏  and azimuth angle 𝜙𝜙𝑖𝑖,𝑏𝑏 . The subscript 𝑏𝑏 ∈ {𝑓𝑓,𝑚𝑚,𝑎𝑎}  distinguishes between the 
fore, mid-, and aft-beam. Note that in the processing chain described below, the time-series 
are processed for each GPI separately. 

6.2 Sensor intra-calibration 

During the mission lifetime of a scatterometer in space, numerous disturbances may influence 
the overall sensor performance and accordingly affect the accuracy of the normalised radar 
cross section σ0 if disregarded. Space and satellite agencies, such as ESA and EUMETSAT, are 
routinely monitoring the scatterometer performance in order to correct for such sensor-
related performance variations. A radiometric calibration methodology for European C-band 
scatterometer missions was developed at TU Wien to ensure consistent backscatter 
observations of these scatterometer missions (Reimer 2014). Sensor intra-calibration aims to 
support already established calibration efforts, undertaken by the operating Space Agency, 
with the objective to monitor and correct for residual scatterometer performance anomalies. 
The radiometric calibration is performed by utilizing natural calibration targets on the Earth’s 
surface, presumed to exhibit a temporally stable, spatially homogeneous, and azimuthally 
isotropic backscatter response over an extended area. With reference to these backscatter 
properties, a backscatter calibration model, (Eqn. 5-3), has been introduced for sensor intra-
calibration. The calibration model was adopted from Long and Skouson (1996) with respect to 
the measurement geometry of ERS AMI-WS. Backscatter coefficients σ0(t, θ, φb) observed for 
a calibration target T are composed of the backscatter coefficient σ0T(θ) of the calibration 
target, the intra-calibration coefficient CIA(t, θ, φb) and sensor noise ε. The azimuth angle φb 
denotes a specific antenna beam b of the fan-beam scatterometer, determined as a discrete 
azimuth angle resulting from the chosen orbit and the antenna mounting with respect to the 
satellite ground track. 

 𝜎𝜎0(𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) = 𝜎𝜎𝑇𝑇0(𝜃𝜃) + 𝐶𝐶𝐼𝐼𝐼𝐼(𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) +  𝜀𝜀  Eqn. 6-3 

Because of the postulated characteristics of the employed calibration targets, the backscatter 
coefficient σ0T(θ) of a specific calibration target T can be defined as a function of the incidence 
angle θ exclusively. The intra-calibration coefficient CIA(t, θ, φb) incorporates any arbitrary 
performance anomalies related to the instrument, accounting for variations in individual 
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antenna characteristics, sensor component degradations or any other anomalies influencing  
the calibration level of the scatterometer. In the case of a perfectly calibrated instrument, the 
intra-calibration coefficient CIA(t, θ, φb) vanishes, resulting in observations σ0(t, θ, φb) 
deviating from the target backscatter coefficient, σ0T(θ), by the additive instrument noise term 
ε. Furthermore, instrument noise ε is treated as white Gaussian noise with zero mean in the 
calibration model. Assuming a perfectly calibrated scatterometer for the time being, an 
estimate of the unknown backscatter coefficient σ0T(θ) can be determined for each calibration 
target as a function of incidence angle θ by averaging a sufficient number of observations. 
Analyses of the backscatter characteristics of the used natural calibration targets indicated 
that the backscatter–/incidence angle dependency of targets can be adequately modeled by 
a 2-order-polynomial function centered at 40 degrees incidence angle as stated in the 
following equation (Reimer 2014). 

 𝜎𝜎𝑇𝑇0(𝜃𝜃) =   𝐵𝐵𝑇𝑇0(40°) +  �𝐵𝐵𝑇𝑇
𝑝𝑝(40°) ∗ (𝜃𝜃 − 40°)𝑝𝑝

2

𝑝𝑝=1

 Eqn. 6-4 

Polynomial coefficients of the calibration target backscatter model, i.e., the calibration 
reference, are determined by an ordinary least square estimation with respect to the 
extracted data. Separate calibration references are determined for ascending and descending 
orbit overpasses of the scatterometers because of known systematic differences in the 
recorded backscatter coefficient (Bartalis et al. 2006). The derived backscatter calibration 
reference, σ0T(θ), constitutes the time invariant backscatter response of a calibration target T. 
Hence, deviations of the recorded backscatter coefficient σ0(t, θ, φb) to the calibration 
reference σ0T(θ) are held to give estimates of calibration anomalies incorporated in the 
calibration coefficient CIA(t, θ, φb). In the case of the European C-band scatterometers, 
calibration anomalies can affect particular antenna beams or the entire scatterometer system. 
Consequently, intra-calibration coefficients are determined for each scatterometer antenna 
beam φb separately. Eqn. 5-3 can be solved with respect to the intra-calibration coefficient, 
resulting in realizations of CIA(t, θ, φb) affected by additive instrument noise ε per calibration 
target T as stated in the following. 

 𝐶𝐶𝐼𝐼𝐼𝐼,𝑇𝑇(𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) = 𝜎𝜎0(𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) −  𝜎𝜎𝑇𝑇0(𝜃𝜃) Eqn. 6-5 

Calibration target specific intra-calibration coefficients CIA, T(t, θ, φb) are deduced for each 
antenna beam of the scatterometer separately, discriminating between ascending and 
descending orbit overpasses by utilizing the corresponding calibration target reference σ0T(θ). 
The intra-calibration coefficient is exclusively an attribute of the scatterometer and 
consequently independent of the calibration target T used for determination. Therefore, the 
presented intra-calibration approach makes use of numerous calibration targets for a robust 
determination of the scatterometer related intra-calibration coefficients. Calibration 
coefficients CIA(t, θ, φb) are inferred for each antenna beam, per month, as a function of the 
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incidence angle θ by fitting a straight line through the target specific coefficients CIA, T(t, θ, φb) 
of all employed calibration targets T. Finally, calibrated backscatter observations are derived 
by subtracting the intra-calibration coefficient CIA from the observed backscatter coefficient 
σ0(t, θ, φb) to achieve a consistent calibration level of the scatterometer over time. 

 𝜎𝜎𝐼𝐼𝐼𝐼0 (𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) = 𝜎𝜎0(𝑡𝑡,𝜃𝜃,𝜑𝜑𝑏𝑏) −  𝐶𝐶𝐼𝐼𝐼𝐼,𝑇𝑇(𝑡𝑡, 𝜃𝜃,𝜑𝜑𝑏𝑏)    Eqn. 6-6 

 

 

 

  

 

Figure 3: ERS-1/2 AMI-WS and Metop-A ASCAT geometry, introducing swaths, beams and nodes. 
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6.3 Azimuthal Normalisation 

In some regions backscatter 𝜎𝜎0 varies strongly with azimuth or look angle, an effect known as 
azimuthally anisotropy. These azimuthal effects are accounted for by applying a polynomial 
correction term to the backscatter values. In this step, the coefficients of the polynomials are 
computed from the backscatter time series. 

In general, the azimuth angle under which a location is seen depends on the beam (fore-, mid- 
or aft-beam), the swath (left or right) and the satellite direction (ascending or descending), 
resulting in 6 azimuth configurations for AMI-WS and 12 azimuth configurations for ASCAT 
respectively. For each of these configurations c , the 𝜎𝜎0  - 𝜃𝜃  dependency is modelled as a 
second order polynomial 𝑝𝑝𝑐𝑐(𝜃𝜃). The coefficients of these polynomials are determined by 
fitting the model to all observations falling into the respective configuration category. 
Furthermore, an overall model 𝑝𝑝𝑜𝑜(𝜃𝜃) is fitted to all observations, resulting in a total of 3 x 13 
= 39 parameters for ASCAT and 3 x 7 = 21 parameters for AMI-WS respectively. 

During the subsequent steps, a correction bias is applied to each backscatter value 𝜎𝜎𝑖𝑖,𝑏𝑏0 , 
depending on its azimuthal configuration: 

 σi,b0  ← σi,b0 + po�θi,b� −  pc�θi,b� Eqn. 6-7 

This approach has been suggested, and is justified and described in more detail in  
Bartalis et al. (2006). 

6.4 Estimate Noise of Backscatter Measurements 

This step initialises the error propagation in the algorithm. It estimates the random noise of a 
single beam measurement 𝜎𝜎0. This is based on the following observation: all three beams 
observe the same region (soil moisture), and the fore- and aft-beam have the same incidence 
angle. Thus, as long as there are no azimuthal effects, the measurements of the for- and aft-
beam are comparable, i.e., statistically speaking, they are instances of the same distribution. 
Hence, the expectation of the difference: 

 δ ∶=  σf
0 −  σa0   Eqn.6-8 

should be 0, and its variance should be twice the variance of one of the beams (assuming, the 
measurements are independent): 

 var[δ] = 2 var[σ0] Eqn.6-9 
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By taking the square root and re-arranging, this gives us an estimate of the standard deviation 
of 𝜎𝜎0, which is called estimated standard deviation (ESD, see also Figure 4): 

 ESD = std[σ0] =
std[δ]

√2
 Eqn.6-10 

whereby 𝑠𝑠𝑠𝑠𝑠𝑠[𝛿𝛿] is obtained as empirical standard deviation of 𝛿𝛿 over the whole time series. 

 

 

Figure 4: Global distribution of ESD. 

6.5 Model Incidence Angle Dependence and Vegetation Correction 

The key equation of the model expresses the observed backscatter 𝜎𝜎0(𝜃𝜃, 𝑡𝑡) as a function of 
the incidence angle 𝜃𝜃  at day 𝑑𝑑 , more precisely as a second order polynomial about the 
reference angle  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 40𝑜𝑜  (Wagner et al. 1999b): 

 
𝜎𝜎0(𝜃𝜃,𝑑𝑑)  =  𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� + 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��𝜃𝜃 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�

+
1
2
𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��𝜃𝜃 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�

2
 Eqn.6-11 

whereby the 0th-order coefficient 𝜎𝜎0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  is the normalised backscatter at the 40𝑜𝑜 
reference incidence angle, and the 1st and 2nd order coefficients 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� and 𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� 
are referred to as slope and curvature parameters (see Figure 5). Slope and curvature mediate 
the effect of vegetation on the functional relationship between 𝜎𝜎0  and 𝜃𝜃 : for sparse 
vegetation, the curve tends to drop off rapidly, while for fully grown vegetation, it becomes 
less steep, almost horizontal in the case of rain forest (Figure 5b). In the model, we assume 
that the vegetation state is always the same at the same day of the year, i.e. it does not change 
inter-annually, and is thus a function of the day-of-year 𝑑𝑑. Hence, for each GPI, there will be 
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366 vegetation curves, each determined by a slope/curvature pair 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�,  𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�. 
The slope and curvature parameters, which determine, in conjunction with the incidence 
angle, the effect of vegetation on the backscatter, are estimated during this step. 

 

Figure 5: Backscatter as function of the incidence angle. In WARP, it is assumed that an increase in 
soil moisture simply shifts the curve upwards (a), while a change in vegetation affects its shape, i.e., 
higher order moments (b). 

Slope and curvature are determined as the coefficients of a straight line fitted to the so called 
local slopes. Local slopes are estimates of the first derivative of the  
backscatter - incidence angle dependency, and are computed as difference quotients between 
fore-and mid-beam, and aft- and mid-beam, respectively: 

 σlocal′  (θ, t) =
∆σ0

∆θ
 Eqn.6-12 

To be more specific, each backscatter beam-triple [𝜎𝜎𝑖𝑖,𝑓𝑓 ,𝜎𝜎𝑖𝑖,𝑚𝑚,𝜎𝜎𝑖𝑖,𝑎𝑎] (fore-, mid-, and aft-beam 
measurements) taken at incidence angles [𝜃𝜃𝑖𝑖,𝑓𝑓 ,𝜃𝜃𝑖𝑖,𝑚𝑚,𝜃𝜃𝑖𝑖,𝑎𝑎 ] yields two local slope estimates at 
day 𝑑𝑑𝑖𝑖: 

 
σi,f′   �

θi,m +  θi,f
2

, di� =
σi,m − σi,f
θi,m − θi,f

 

 
Eqn.6-13 

 𝜎𝜎𝑖𝑖,𝑎𝑎′  �
𝜃𝜃𝑖𝑖,𝑚𝑚 + 𝜃𝜃𝑖𝑖,𝑎𝑎

2
,𝑑𝑑𝑖𝑖� =

𝜎𝜎𝑖𝑖,𝑚𝑚 − 𝜎𝜎𝑖𝑖,𝑎𝑎
𝜃𝜃𝑖𝑖,𝑚𝑚 − 𝜃𝜃𝑖𝑖,𝑎𝑎

 Eqn.6-14 

These local slopes are taken as instances of the first derivative of Eqn.6-15 

 𝜎𝜎′(𝜃𝜃, 𝑑𝑑)  =  𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� + 𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��𝜃𝜃 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� Eqn.6-15 

The width τ of the time window is crucial for the quality of the estimates. A too short time-
window length τ yields noisy slope 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� and curvature  𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� estimates, while a 
too long window filters a remarkable part of the vegetation variation resulting in a bias. 
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Moreover, the time-window length τ is also dependent on the regional climate. With 
reference to the spatial resolution of scatterometers, it is assumed that vegetation is not 
changing remarkably during a less than 2-week period and the seasonal vegetation change 
does not take longer than 12 weeks. Simulations have been performed to quantify an 
optimum time window length τ for different climate regions. It was found that a time window 
length of 6 weeks represents a good balance between noise and bias introduced to the 
estimate of slope and curvature globally. Slope and curvature values are computed by 
employing local slope values located within the fixed time window length τ centered at the 
specific day-of-year 𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡). The regression fit is performed by making use of kernel 
smoother method known as Local Linear Regression utilizing an Epanechnikov kernel. Slope 
and curvature are determined as the parameters of the local linear fit conducted over the 
whole range of incidence angles of the local slopes. Therefore, local slope values are assigned 
with weights according to their distance in time from the evaluation day determined by the 
Epanechnikov kernel. The error variance of the slope 𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��  and curvature 
𝑣𝑣𝑣𝑣𝑣𝑣�𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑓𝑓 ,𝑑𝑑�� parameters is estimated by means of standard linear estimation theory. 
Detailed information about the estimation process of slope and curvature can be found in 
(Melzer 2013). 

 

Figure 6: The effect of the time window size on the slope estimate. 

6.6 Incidence Angle Normalisation of Backscatter 

Backscatter measurements taken at different incidence angles are not directly comparable. 
Having retrieved the slope and curvature parameters, we can invert the model Eqn.6-15 in 
order to compute from a backscatter measurement taken at an arbitrary incidence angle the 
corresponding value at the reference angle. Letting 
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 𝒙𝒙 = �𝜎𝜎𝑖𝑖,𝑏𝑏0 (𝜃𝜃𝑖𝑖),𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�,𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑓𝑓 ,𝑑𝑑𝑖𝑖��, Eqn.6-16 

we get Eqn.6-17 

 
𝑓𝑓(𝒙𝒙) = 𝜎𝜎𝑖𝑖,𝑏𝑏0 �𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�

= 𝜎𝜎𝑖𝑖,𝑏𝑏0 (𝜃𝜃𝑖𝑖) − 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�𝛥𝛥𝜃𝜃𝑖𝑖 −
1
2
𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�(𝛥𝛥𝜃𝜃𝑖𝑖)2 Eqn.6-17 

Note that we have not included the day of year 𝑑𝑑𝑖𝑖  as parameter of the backscatter 𝜎𝜎𝑖𝑖,𝑏𝑏0 (𝜃𝜃𝑖𝑖) 
for several reasons. First, in the model the backscatter for a given day is thought of a function 
of the incidence angle, but not of time. It does depend on time, though not in a direct 
functional sense, but indirectly, through 𝑑𝑑𝑖𝑖 ’s effect on the slope and curvature, which it 
indexes. Second, the time parameter can always be retrieved from the time series via the 
index 𝑖𝑖, so adding it to the parameter list is redundant. Third, the notation becomes more 
concise. However, we must use 𝑑𝑑𝑖𝑖  as argument to the slope and curvatures parameters, since 
it is used as index into these parameter arrays. 

If we assume that the errors of the normalised backscatter, slope and curvature – i.e., the 
components of 𝒙𝒙 - are uncorrelated, the covariance matrix of 𝒙𝒙 is simply 

 Covx = 𝐼𝐼3𝑥𝑥3 �𝐸𝐸𝐸𝐸𝐷𝐷2, var�𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖��, var�𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖���
𝑇𝑇

 Eqn.6-18 

The Jacobian of 𝑓𝑓 is obtained as: 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
� = [1,−Δ𝜃𝜃𝑖𝑖,−0.5(Δ𝜃𝜃𝑖𝑖)2. ] Eqn.6-19 

Thus, according to Eqn.6-35, the noise variance of the normalised backscatter for beam 𝑏𝑏 is 
Eqn.6-20: 

 
var�𝜎𝜎𝑖𝑖,𝑏𝑏0 �𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�� = 𝐸𝐸𝐸𝐸𝐷𝐷2 + var�𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�� (Δ𝜃𝜃𝑖𝑖)2 

+0.25  var�𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�� (Δ𝜃𝜃𝑖𝑖)4 Eqn.6-20 

Finally, the three beams – now having been shifted to a common reference angle – are 
averaged: 

 𝜎𝜎𝑖𝑖0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� =
1
3

� 𝜎𝜎𝑖𝑖,𝑏𝑏0 �𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�
𝑏𝑏∈{𝑓𝑓,𝑚𝑚,𝑎𝑎}

 Eqn.6-21 
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The corresponding noise variance is given by 

 var[𝜎𝜎𝑖𝑖0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�] =
1
9

� var[𝜎𝜎𝑖𝑖,𝑏𝑏0 �𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�]
𝑏𝑏∈{𝑓𝑓,𝑚𝑚,𝑎𝑎}

 Eqn.6-22 

As can be seen, averaging over the three beams has the effect that the variance of the noise 
due to instrument noise, speckle and azimuthal effects is lowered by a factor of three. It does, 
however, not lower the error due to the lack of fit of the slope model (Wagner 1998). 

6.7 Determination of Dry and Wet References 

For a given GPI, the dry 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑� and wet 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑) reference are the historically 
lowest and highest normalized backscatter values, respectively, measured at this location at a 
given day d. The dry and wet references are stored as parameter arrays indexed by the time, 
just as slope and curvature.  

The WARP model assumes that the vegetation (i.e., backscatter-vs.-incidence angle) curves 
for dormant and full vegetation intersect, and that the point of intersection depends on the 
soil moisture conditions: the intersection points for the driest and wettest conditions are 
called dry and wet crossover angles, respectively (Figure 7). The wet crossover angle 𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤 is 
at 40 degrees (which is also the reference angle), while the dry crossover angle 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 is located 
at 25 degrees (these values have been determined empirically). The importance of the 
crossover angle concept lies in the fact that at the crossover angles, vegetation has no effect 
on backscatter (Wagner 1998).  

 

Figure 7: Cross-over angle concept for vegetation correction. 
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In order to determine the lowest backscatter value irrespective of the vegetation conditions, 
the normalised backscatter measurements are first shifted to the dry crossover angle: 

 
𝜎𝜎𝑖𝑖0�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�  =  𝜎𝜎𝑖𝑖0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� + 𝜎𝜎′ �𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖��𝛥𝛥𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�

+
1
2
𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖��𝛥𝛥𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�

2
, 

Eqn.6-23 

with Δ𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 = �𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�,, and corresponding noise estimate 

 
𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑖𝑖0�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�]  = 𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑖𝑖0]�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�] + 𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�]�Δ𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�

2
  

+
1
4
𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�]�Δ𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�

4
. 

Eqn.6-24 

Note the similarity to Eqn.6-17 and Eqn.6-20, but in this case, we are not shifting from the 
individual incidence angle to the reference angle, but from the reference angle to the dry 
crossover angle. 

From the resulting empirical distribution, the average of the 𝑀𝑀 = 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 ∗ 2.5%  smallest 
values is used as an estimate of the lowest backscatter value at the dry crossover angle:  

 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑� =
1
𝑀𝑀

 �𝜎𝜎Π{𝑖𝑖}
0 �𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�,

𝑀𝑀

𝑖𝑖=1

 Eqn.6-25 

whereby Π is a permutation that sorts the timeseries in ascending order w.r.t. the backscatter 
values. Since the normalised backscatter values have different noise variances (depending on 
the day and incidence angle of acquisition), there exists no simple general expression for the 
noise variance of the average, but we have (assuming the noise contributions of the 
measurements are uncorrelated): 

 𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�] =
1
𝑀𝑀2  �𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎Π{𝑖𝑖}

0 �𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�].
𝑀𝑀

𝑖𝑖=1

 Eqn.6-26 

Finally, for each day t, 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑� has to be shifted back to the reference angle along its 
corresponding vegetation curve, in order to obtain  𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�:  

 
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  =   𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑� − 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��Δθdry�

−
1
2
𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��Δθdry�

2
 Eqn.6-27 

The noise is given by 

 
𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�]  =   𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑�] + 𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑��Δθdry�

2
] 

+
1
4

 𝑣𝑣𝑣𝑣𝑣𝑣[ 𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�]�Δθdry�
4
 

Eqn.6-28 
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This is the final estimate of the noise variance for the dry reference. The estimates for the wet 
reference 

 
𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑡𝑡�  =   𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤(𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤) − 𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�(Δθwet)

−
1
2
𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�(Δθwet)2 Eqn.6-29 

(where Δ𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤 = 𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤 −  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 and its corresponding noise 

 

𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�]  
=   𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤(𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤)]  + 𝑣𝑣𝑣𝑣𝑣𝑣[𝜎𝜎′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�(Δθwet)2] 

+
1
4

 𝑣𝑣𝑣𝑣𝑣𝑣[ 𝜎𝜎′′�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�](Δθwet)4 
Eqn.6-30 

are obtained in a completely analogue fashion, but instead of the 2.5 % lowest values at θdry, 
the 2.5 % highest values have to be averaged at the wet crossover angle θwet  in order to 
compute 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤(𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤). 

It is worth mentioning that due to the selection of the cross-over angles, which are fixed at 
25° for 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑0 and 40° for 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤0  globally, the dry reference is changing over time, whereas 
𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑�  is constant (i.e., it does not depend on the day). This is because the wet 
crossover angle is equal to the reference angle, and thus Δ𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤  ≡ 0 (see Figure 8). A global 
map of abovementioned references is given in Figure 9. 

 

 

Figure 8: Example of the dry and wet reference characteristics at a GPI near Salamanca, Spain. 
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Figure 9: Example of wet backscatter reference (a), lowest dry backscatter reference (b) and 
 sensitivity (c) derived from METOP-A ASCAT (2007-2008). 

6.8 Wet reference correction 

It is possible that a region has never been captured in a truly saturated condition, which could 
be simply due to the fact that there were none, or that it did not occur during a satellite 
overpass. Thus, the assumption that the highest measured backscatter value represents a 
saturated condition is not valid. In order to correct for the first issue a so-called wet reference 
correction will be applied in affected regions. However, it is not possible to identify those 
regions relying only on Scatterometer measurements. Therefore, an external climate 
classification dataset will be used (Kottek et al. 2006). The utilisation of the wet reference 
correction is done in 2 steps: first the lowest level of the wet reference is set to -10 dB, 
globally. Subsequently, in regions with rarely saturated soil moisture conditions 
(predominantly dry and hot climate zones) the wet reference is further raised until the 
sensitivity reaches at least 5 dB (see Figure 10). 
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Figure 10: Wet correction (a) and its effect on sensitivity (b) globally. 

6.9 Soil Moisture Calculation 

The surface soil moisture detection algorithm is a change detection algorithm which basically 
compares the observed normalised backscatter to the highest (wettest) and lowest (driest) 
values ever observed at the grid point at day t. Under the assumption of a linear relationship 
between the backscatter in dB and surface soil moisture, the latter can be estimated as 
(Wagner 1998): 

 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) =

𝜎𝜎𝑖𝑖0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� − 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�
𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖� − 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�

. 100 

=
𝜎𝜎𝑖𝑖0�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� − 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑�𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑑𝑑𝑖𝑖�

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 . 100.  

Eqn.6-31 

Note that 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) is expressed in percent. The difference between wet and dry reference in 
the denominator is known as sensitivity (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 
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By proceeding along the lines of the derivation of Eqn.6-20, we obtain the following noise 
estimate for the soil moisture 

 

 

𝑣𝑣𝑣𝑣𝑣𝑣[𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)] =
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Eqn.6-32 

6.10 Error Propagation 

Let 𝒙𝒙 = [𝑥𝑥1, … , 𝑥𝑥𝑝𝑝] be a p-dimensional observation vector. 𝒙𝒙 is assumed to be an instance of 
a p-dimensional random variable, with known covariance matrix 𝚺𝚺𝒙𝒙. We are interested in how 
the covariance transforms under a mapping :ℝ𝑝𝑝  → ℝ𝑞𝑞 ,𝒚𝒚 =  𝑓𝑓(𝒙𝒙) , transforms, i.e., given 𝒙𝒙 
and 𝑓𝑓, we would like to know the covariance of 𝒚𝒚,𝚺𝚺𝒚𝒚. If 𝑓𝑓 is a linear mapping of the form 𝒚𝒚 =
𝑨𝑨𝑨𝑨 + 𝒃𝒃,𝑨𝑨 ∈ ℝ𝑞𝑞𝑞𝑞𝑞𝑞,𝒃𝒃 ∈ ℝ𝑞𝑞, then the covariance transforms like 

 𝚺𝚺𝒚𝒚 = 𝑨𝑨𝚺𝚺𝒙𝒙𝑨𝑨𝑻𝑻, Eqn.6-33 

whereby 𝑨𝑨𝑻𝑻 denotes the transpose of 𝑨𝑨. 

If, on the other hand, 𝑓𝑓 is a non-linear mapping, we first linearise it by replacing it by its first 
order Taylor approximation about the operation point 𝒙𝒙𝒐𝒐: 

 𝒚𝒚 =  𝑓𝑓(𝒙𝒙) ≈ 𝑓𝑓(𝒙𝒙𝟎𝟎) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
� (𝒙𝒙 − 𝒙𝒙𝒐𝒐) Eqn.6-34 

whereby �𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
� is the Jacobian of 𝑓𝑓. 

Putting everything together, we finally obtain Eqn.6-35 

 𝚺𝚺𝒚𝒚 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
�  𝚺𝚺𝒙𝒙 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
� 𝑻𝑻 Eqn.6-35 

for the variance of 𝒚𝒚 under the mapping 𝑓𝑓. Eqn.6-35 is the workhorse of the WARP error 
propagation scheme. 
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7 Known Limitations 

7.1 Computation of Slope/Curvature Parameters 

Another line of investigation we shall start is the feasibility of estimating slope/curvature 
values separately for each year (instead of inter-annually). This was clearly not possible for 
ERS, but even for ASCAT with its increased temporal resolution the question remains if under 
these conditions enough data remains within the time window to yield reliable parameter 
estimates. An interesting aspect would be the possibility to detect slope-outliers (e.g., due to 
extraordinary events like flash-floods or drought) by comparing the slope estimates for the 
same day across several years. These outliers would be removed before computing an inter-
annually averaged slope parameter which will be used in all cases where a full processing is 
either deemed too costly (periodic time series append without reprocessing of parameters at 
TU Wien) or simply not possible (WARP NRT running at EUMETSAT). First investigations 
concentrating on slope/curvature estimates separately for each year can be found in  
chapter 8.4. 

7.2 Dry and Wet Crossover Angles 

The crossover angle concept, already discussed in chapter 6.7, states that at the dry and wet 
crossover angles, vegetation has no effect on backscatter (Wagner 1998). These crossover 
angles have been determined empirically based on four study areas (Iberian Peninsula, 
Ukraine, Mali, and Canadian Prairies). Nevertheless, the empirically determined dry and wet 
crossover angles are used on a global scale in the surface soil moisture retrieval model. A 
known limitation of the global use of these crossover angles is that depending on the 
vegetation type - or more precisely the evolution of biomass of a specific vegetation type -, 
crossover angles may vary across the globe, which is not yet considered in the model. 
Furthermore, for some regions on the Earth’s surface the crossover angle concept may not be 
applicable, in particular regions without vegetation cover (i.e., deserts). 

7.3 Backscatter in Arid Regions 

In arid regions or more specifically in desert environments it appears that the dry reference 
shows seasonal variations, which are assumed to reflect vegetation phenology. But this cannot 
be true for desert environments which are characterised by very limited or no vegetation at 
all. In principle, seasonal variations of the dry reference are desirable to account for 
backscatter changes induced by vegetation referred to as vegetation correction. Vegetation 
correction is based upon changes in the slope parameter, which can be also observed in desert 
environment. These variations seem to have a big impact particularly in areas with very low 
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backscatter. Hence, it needs to be clarified whether it is a real physical process, noise or 
something else reflected in the slope parameter. 
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8 Scientific Advances under Investigation 

8.1 Inter-Calibration of Backscatter Data Records 

In order to directly compare Level 2 surface soil moisture values retrieved from the ERS-1/2 
AMI-WS and MetOp-A/B ASCAT it is a pre-condition that these instruments have more or less 
exactly the same Level 1 calibration. Unfortunately, this is not yet the case owing to the fact 
that individual instrument generations underwent a somewhat different calibration 
procedure: While ASCAT is calibrated using active ground-based transponders only (Wilson et 
al. 2010), the ERS AMI-WS was calibrated using a combination of transponder measurements 
and vicarious calibration using Amazon Rainforest as a natural target (Lecomte and Wagner 
1998). However, similarities in the instrument technical design of ERS-1/2 AMI-WS and 
MetOp-A/B ASCAT encourage a Level 1 data inter-calibration of these scatterometer missions 
towards a long-term consistent data record. Various efforts have been undertaken to examine 
potential differences in the Level 1 calibration of  
ERS-1/2 AMI-WS, and MetOp-A/B ASCAT (Bartalis 2009; Elyouncha and Neyt 2013a, b; Talone 
et al. 2012). Bartalis (2009) inferred inter-calibration biases of ERS-2 AMI-WS and MetOp-A 
ASCAT by performing a backscatter collocation using observations of the years 2007 – 2008. 
This study indicates a systematic incidence angle dependent bias between the two 
instruments with a magnitude of about 0.22 dB (see Figure 11). Elyouncha and Neyt (2013a) 
investigated calibration differences between ERS-1 and ERS-2 AMI-WS as well as differences 
in the calibration levels of ERS-2 AMI-WS and MetOp-A ASCAT. 

 
a) 

 
b) 

 
c) 

Figure 11: Level 1 inter-calibration biases between ERS-2 AMI-WS and MetOp-A ASCAT as a function 
of incidence angle a) Fore-beam   b) Mid-beam   c) Aft-beam [from Bartalis (2009)] 

Furthermore, a number of diverse inter-calibration methodologies, covering backscatter 
collocation and model based (rainforest, ocean and sea ice) inter-calibration, were conducted 
and resulting inter-calibration biases of the individual approaches were compared. Examined 
inter-calibration methodologies reveal small discrepancies in the magnitude of the resultant 
Level 1 calibration biases (see Figure 12 and Figure 13), but the different methods provide 
relatively consistent inter-calibration results. Additionally, it was found that model based 
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inter-calibration methodologies like rainforest, ocean and sea ice inter-calibration performed 
more accurately, in terms of their standard deviation, than inter-calibration utilising 
collocated backscatter measurements. However, inter-calibration biases estimated by 
collocation between ERS-2 AMI-WS and MetOp-A ASCAT found by Elyouncha and Neyt (2013a) 
confirm the results discovered Bartalis (2009). Nevertheless, the assumption of neglecting 
backscatter differences in time, space and measurement geometry is questionable in terms of 
backscatter collocation, because of the larger biases and larger standard deviations observed 
with respect to model-based methods. 

 

a) b) c) 

Figure 12: Level 1 calibration biases between ERS-1 and ERS-2 AMI-WS Collocation (red), 
ocean (blue), sea ice (black) and rainforest (green) a) Fore-beam   b) Mid-beam   c) Aft-beam [from 
Elyouncha and Neyt (2013a)] 

 

a) b) c) 

Figure 13: Level 1 calibration biases between ERS-2 AMI-WS and MetOp-A ASCAT. Collocation (red), 
ocean (blue), sea ice (black) and rainforest (green). a) Fore-beam   b) Mid-beam   c) Aft-beam [from 
Elyouncha and Neyt (2013a)] 

Consolidated and accurate magnitudes of Level 1 inter-calibration biases are not yet well 
enough known for the considered scatterometer missions. Therefore, additional studies need 
to be carried out to quantify potential inter-calibration biases between diverse 
scatterometers. It is foreseen to concentrate on model based inter-calibration methodologies 
in order to achieve a consistent calibrated Level 1 backscatter observations of ERS-1/2 AMI-
WS and MetOp-A/B ASCAT. In case that this activity will be successful it will be possible to 
merge these data sets already at the backscatter measurement level. Therefore, the objective 
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is to merge consistent calibrated Level 1 backscatter observations of various scatterometer 
missions towards a uniform Level 2 surface soil moisture retrieval, rather than utilising a 
statistical properties matching of different Level 2 soil moisture data sets through CDF 
matching (as was done within the WACMOS and CCI phase I projects). A rigorous 
determination of potential inter-calibration biases between various scatterometer missions is 
supposed to be inferred by utilising a set of different inter-calibration methodologies 
simultaneously. Accordingly, causes of discrepancies in the bias magnitudes between various 
inter-calibration approaches have to be investigated in depth. Furthermore, the combined use 
of different inter-calibration methodologies will demand an obvious calibration information 
selection scheme. Such a scheme is needed to derive highly accurate calibration biases with 
respect to the alignment of calibration levels of diverse scatterometer missions in accordance 
to defined calibration requirements. Each inter-calibration methodology will provide valuable 
calibration information, but with reference to the postulated calibration requirements, 
individual methodologies need to be selected to meet the claimed requirements. As can be 
envisioned, an important task is to define and formulate calibration requirements envisaged 
to achieve a certain accuracy of the final Level 2 soil moisture. A minimum accuracy 
requirement for global soil moisture data is postulated of 4 vol%, as specified for the SMOS 
mission. However, soil moisture retrievals from scatterometers do not allow estimations in 
absolute manner, but the requirement can be approximately converted to a percentage index 
as derived for scatterometer observations. Scatterometer retrievals are capturing soil 
moisture conditions ranging from completely dry (0 vol%) to saturated soil moisture 
conditions (app. 50 vol%). As a consequence, the postulated accuracy can be translated to a 
value of 8%. Inter-calibration biases and their direct effect on the Level 2 surface soil moisture 
retrieval from scatterometer data was analysed by Hahn et al. (2012), highlighting that a bias 
of 0.22 dB between two instruments will cause soil moisture deviations ranging from 4% to 
16% (see Figure 14). Accordingly, to achieve the postulated soil moisture accuracy of 4 vol% 
or respectively 8% index globally, inter-calibration biases between two scatterometers have 
to be smaller than app. 0.1 dB. 
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Figure 14: Effect of an inter-calibration bias of 0.22 dB on the final surface soil moisture retrieval [from 
Hahn et al. (2012)] 

Furthermore, to achieve highly accurate surface soil moisture retrievals, Level 1 backscatter 
observations of different scatterometer missions have to be acquired at almost the same 
spatial resolution. Hahn 2012 discovered errors in soil moisture ranging from appr. -6% - 6% 
globally, because of a spatial resolution mismatch between ERS-2 AMI-WS (50 km) and 
MetOp-A ASCAT (25 km) Level 1 backscatter observations. This source of error can be 
neglected if all used Level 1 scatterometer products do have the same spatial resolution. 

Reimer (2014) introduced a model based inter-calibration methodology which accounts for 
temporal calibration biases within a specific scatterometer mission and subsequently 
considers temporal invariant inter-calibration biases between various scatterometer missions. 
This approach does not make use of various inter-calibration methodologies, but employs a 
number of natural calibration targets (rainforests) supposed to result in a more robust 
estimation of inter-calibration biases. Inter-calibration biases are determined by a calibration 
information selection scheme taking into account the standard deviations of each individual 
calibration target and the calibration model. Results of this inter-calibration methodology are 
provided in Figure 15 for ERS-2 AMI-WS and MetOp-A ASCAT and in Figure 16 for MetOp-A 
and MetOp-B ASCAT. This scatterometer calibration methodology may serve as a starting 
point for further studies, incorporating different model based inter-calibration methodologies 
and an obvious calibration information selection scheme. As can be seen in Figure 15 and 
Figure 16, inter-calibration biases are modelled as a 1-order polynomial function with respect 
to the incidence angle. Modelled inter-calibration biases of ERS-2  
AMI-WS and MetOp-A ASCAT are ranging from 0.39 dB to -0.08 dB, highlighting the need for 
a proper instrument inter-calibration to achieve soil moisture accuracies of 4 vol%. 
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1-order polynomial functions representing the inter-calibration bias are not capable to 
describe calibration deficiencies at specific incidence angles, but are applicable to correct for 
possible biases and first-order deviations of the backscatter versus incidence angle behaviour. 
Moreover, residual calibration insufficiencies were encountered for MetOp-A ASCAT depicted 
in oscillating alterations with respect to the incidence angle (Figure 15-b). Such residual 
calibration artefacts were not discovered for ERS AMI-WS, which foster the suggestion that 
the cause of these oscillations may be related to the exclusive use of ground-based 
transponders for calibration. Using ground-based transponders for calibration will provide 
calibration information of the antenna gain pattern at distinct locations. In the ERS 
scatterometer era, transponder calibration campaigns were supported by relative calibration 
campaigns over Amazon Rainforest to fine-tune the antenna gain pattern. However, the cause 
of these oscillating alterations (wiggles) needs to be investigated for MetOp-A and B ASCAT to 
derive consistent calibrated Level 1 backscatter records. 

Calibration biases are estimated within a restricted range of the scatterometer measurement 
space, depending on the utilised inter-calibration methodology and/or calibration targets. 
Therefore, one research question which arises is if calibration biases derived within a 
restricted range of the measurement space could accurately represent calibration biases 
across the entire measurement space of the considered scatterometers. The relationship may 
be constant but could also be linear or any other function with respect to the magnitude of 
the backscatter observations (see Figure 17), which will require further research and 
encourage the use of different inter-calibration methodologies. 

 

   

a) b) c) 

Figure 15: Level 1 inter-calibration biases between ERS-2 SCAT and MetOp-A ASCAT. Data density 
plot (greyscales) and estimated bias (blue line) a) Fore-beam   b) Mid-beam   c) Aft-beam [from 
Reimer (2014)] 
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a) d) 

  

b) e) 

  

c) f) 

Figure 16: Level 1 inter-calibration biases between MetOp-A and MetOp-B ASCAT. Data density plot 
(greyscales) and estimated bias (blue line) Fore-beam a) left swath d) right swath  
Mid-beam b) left swath e) right swath   Aft-beam c) left swath f) right swath [from Reimer (2014)] 
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Figure 17: Possible relationship between MetOp ASCAT and ERS AMI-WS backscatter. 

8.2 Estimation of Diurnal Variability 

It has been noted that the backscatter measurements and, consequently, the Level 2 (L2) 
surface soil moisture retrievals from satellite platforms, although not dependent on 
temperature, show in some regions a difference between morning (i.e., day or sun-lit) and 
evening (i.e., night or dark) acquisitions(Friesen et al. 2012; Friesen et al. 2007). Currently, it 
is not clear if these observed diurnal differences are due to changes in the instrument between 
ascending or descending passes (e.g. due to the strong temperature differences in the sun-lit 
or dark orbital phases), shortcomings in the retrieval algorithm (e.g. neglecting diurnal 
differences in vegetation water content), or if these are just a natural expression of diurnal 
patterns of the surface soil moisture content. 

We will try to identify underlying reasons for diurnal differences by comparing satellite 
ascending and descending orbit soil moisture retrievals. ASCAT measurements are performed 
for descending orbits (equator crossing 09:30, local time) and ascending orbits (equator 
crossing 21:30, local time). To assess the impact of observation time on soil moisture retrieval 
we will split the processing of ASCAT based on the TU Wien retrieval method as shown in 
Figure 18.  
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Figure 18: Proposed Possible relationship between MetOp ASCAT and ERS AMI-WS backscatter. 

8.3 Improved Modelling of Volume Scattering in Soils  

It has long been noted that backscatter measurements over desert areas and semi-arid 
environments during a long dry spell exhibit an unusual behaviour that may lead to a situation 
where soil moisture from scatterometers is often less accurate than radiometer retrievals 
(Gruhier et al. 2009; Wagner et al. 2007). Due to the lack of high-quality reference data in arid 
and semi-arid environments, it has not yet been possible to determine the physical reasons 
for this phenomenon. Various hypotheses exist, including the occurrence of volume scattering 
from deeper soil layers and/or the presence of bedrock close to the surface.  

An illustration of the aforementioned situation is given in Figure 19. It shows two rain events 
clearly depicted by SMOS (Kerr 2012) and soil moisture modelled by the NOAH Global Land 
Data Assimilation System (GLDAS) (Rodell et al. 2004). However, METOP-A ASCAT soil 
moisture surprisingly decreases at the two events and interestingly starts to increase during 
the drying-out afterwards. This time series from a grid point located in the An Nafud Desert, 
which is the northernmost desert on the Arabian Peninsula, is an example for a previously 
identified region affected by unusual backscatter behaviour. A preliminary attempt to look at 
such phenomena globally has been by investigating the Pearson correlation coefficient 
between soil moisture from METOP-A ASCAT and GLDAS, as shown in Figure 20. At a first 
examination it seems that mostly desert areas and arid environments exhibit a negative 
relationship. But for the interpretation it is also important to consider the time period which 
has been used for the computation. In this case two years (2010 and 2011) determine the 
Pearson correlation coefficient, which means that if unusual backscatter behaviour may have 
occurred within a smaller time period, an overall stronger signal characteristic can have 
overshadowed such events. In order to get around this shortcoming a next step will be 
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calculating the Pearson correlation coefficient for certain time windows, which will allow 
determining the point in time for such unusual backscatter events. This will limit the variety 
of influencing factors and can offer an understanding of the dominant physical process. 
Nevertheless, it must be ensured that the results are significant and meaningful, since the 
Pearson correlation coefficient is not robust and sensitive to outliers.  

A special challenge in desert areas has always been the low signal to noise (SNR) ratio, since 
rain events are very rare and/or sporadic. Hence, backscatter dynamics are usually very low 
and prone to be affected by azimuthally anisotropy, speckle and instrument noise (see Figure 
21). In addition, the signal intensity is sometimes also very close to the measurability limit of 
the instrument, which is in the order of -30 dB (see Figure 22). As a result, change detection 
in these areas is a difficult task from the very beginning. Furthermore, it has been noted that 
the quality of the model parameters, which are derived during the retrieval of METOP-A 
ASCAT surface soil moisture, is not as reliable as desired. For example, the estimation of the 
wet reference is problematic due to the fact that saturated soil conditions cannot always be 
captured, simply because there were none at all or not during a satellite overpass. This 
problem has already been addressed by using a wet correction based upon a climate 
classification map (Kottek et al. 2006). During this process dry areas will be identified and the 
wet reference will be raised to a backscatter value simulating the signal acquired under 
saturated soil conditions. This approach is not fully perfect yet and has still room for 
improvements. For example, discrepancies could have been detected in Spain and Turkey, 
where first investigations suggest that this can be attributed to the wet correction (see Figure 
23).  

There is also evidence that another model parameter indicates inconsistencies in dry 
environments. It appears that the dry reference shows seasonal variations, which are assumed 
to reflect vegetation phenology (see Figure 24). However, this cannot be true for desert 
environments with very limited or no vegetation at all. In principle the vegetation correction 
is based upon changes in the slope parameter, which can be also observed in desert 
environment (see Figure 25). These variations seem to have a big impact particularly in areas 
with very low backscatter (< -25 dB). Hence, it needs to be clarified whether it is a real physical 
process, noise or something else reflected in the slope parameter. 

All these preliminary findings suggest that the characteristics of backscatter should be 
explored in more depth in very dry environments. In this context it would be also very 
beneficial looking into historic and on-going scatterometer missions, if similar backscatter 
characteristics can be observed. In future, it is also planned to improve the estimation of the 
dry and wet reference in order to increase the accuracy of the final surface soil moisture 
estimates. Regarding validation, it should be taken into account that the model dataset GLDAS 
has limitations and therefore other datasets shall be used to support the validations as well. 
However, as mentioned in the beginning, high-quality datasets are hardly available and 
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therefore a cross-comparison between datasets from different sources is even more 
important. Future work is also planned on using different methods in detecting and 
quantifying unusual backscatter characteristics. At present, a first approach goes into the 
direction of local linear regression (Cleveland and Devlin 1988), which allows analysing and 
decomposing time series characteristics. 

 

 

Figure 19: Soil moisture times series from GLDAS (blue), SMOS (red) and METOP-A ASCAT 
(black) from a grid point located in the An Nafud Desert. Two rain events are clearly visible 
in the GLDAS and SMOS data set in February/March 2011 and May/June 2011. However, 
METOP-A ASCAT shows almost an inverted behaviour. 

 

Figure 20: Pearson correlation coefficient between METOP-A ASCAT surface soil moisture 
and GLDAS modelled soil moisture from the first layer (0-10cm) for the time period 
2010/2011. The underlying grid is regular with a pixel spacing of 0.25°. A temporal matching 
and spatial nearest neighbour search has been performed before computing the correlation 
coefficient. Grid points with a p-value below 0.05 have been masked. 
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Figure 21: Normalised backscatter at 40° incidence angle from METOP-A ASCAT in the 
Sahara (Libya).  A yearly cycle can be observed, but the overall signal variation is only in the 
order of 1dB. 

 

 

 

Figure 22: Normalised backscatter at 40° incidence angle from METOP-A ASCAT in the Rub' 
al Khali Desert (Saudi Arabia). Backscatter is very low and prone to be affected by 
azimuthally anisotropy, speckle and noise. 
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Figure 23: The map shows METOP-A ASCAT soil water index (SWI) T=20 overlaid on Google 
Maps from August 2012. The two marked areas show unexpected wet soil conditions, where 
first qualitative analyses suggest that these patterns can be attributed to an inaccurate wet 
correction. 



 

Algorithm Theoretical Baseline 
Document (ATBD) 

Version 04.4 
Date 12 November 2018 

 

 

 

 

 

Figure 24: The upper time series illustrates METOP-A ASCAT normalised backscatter at 40° 
incidence angle, as well as the dry (red), wet (green) and wet corrected (black) reference. 
The dry reference shows a seasonal variation, which typically should account for vegetation 
influence. But there should be no vegetation influence in very arid environment. However, 
as a result the dry reference modulates an incorrect signal onto the final surface soil 
moisture values shown in the bottom time series. 
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Figure 25: The slope (left) and curvature (right) parameter from the same grid point as 
shown in Figure 24. Since the incidence angle - backscatter behaviour is characterised by a 
second order polynomial, the slope and curvature parameters are defined as the first and 
second derivative of backscatter from the incidence angle. Changes of the slope and 
curvature parameter are normally associated with vegetation changes; however, in this dry 
environment a different phenomenon must be responsible. Additionally, the uncertainty 
range of each parameter is indicated by a coloured tube around the curve. 

8.4 Better Vegetation Modelling 

Backscatter depends not only on a) soil moisture, but also on b) the incidence angle between 
the beam and the surface and c) the vegetation state. In order to retrieve soil moisture 
estimates from backscatter, we must account for the effects of varying incidence angle and 
vegetation state have to be accounted for. In WARP, this is done by modelling the dependency 
between backscatter and the incidence angle as a second order polynomial for each day of 
the year (the vegetation state is assumed to be a function of the day of the year). The linear 
and quadratic coefficients of the polynomial are referred to as slope and curvature parameter, 
respectively; they are required for both incidence angle normalisation and vegetation 
correction (items b) and c) above), and are thus among the most important WARP parameters. 

The process for estimating the slope and curvature parameters has been extensively 
investigated during the last years. Estimates are now obtained using a kernel smoother for 
regression (previously, standard regression on a subset followed by spline interpolation was 
used). In addition to the "aggregated" parameters computed as an average over all available 
years, yearly slopes (and curvatures) are now computed. These parameters have a higher 
variance than their aggregated counterparts, but can give valuable insight into the vegetation 
dynamics of a single year. Preliminary results show that there can be significant differences 
between the averaged and the yearly slope curves (Figure 26), and the question is, whether 
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these yearly curves will result in better soil moisture estimates. A comparison of the yearly 
slope curve for a test site in Texas, USA, against FAPAR and VOD (optical depth) shows a good 
correlation, about 0.75, suggesting that the yearly slope contains information about the yearly 
vegetation dynamics (Figure 27).  

 
Figure 26  The blue curve is the aggregated (averaged) slope as function of time (day of year) for an 
agricultural area in Kansas, USA. The green curve shows the yearly slope for 2007, the dotted green line 
shows the “confidence band” (+/- 2*standard deviation). The curves differ significantly during several 
periods, in particular around the two peaks. 
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Figure 27 Comparison of the yearly slope, FAPAR and VOD  for a site in Texas, USA. 

If the inter-annual changes between slopes are as large as indicated by our preliminary 
experiments, the use of yearly slope values is expected to yield substantial improvements in 
the vegetation correction step, and consequently the quality of retrieved soil moisture. 
However, the new algorithm has not been extensively validated yet, and this will have to be 
done as part of the proposed project. 

Up to now, the new approach has been tested with ASCAT only. It should, in principle, also be 
applicable to ERS, but since ERS has coarser temporal resolution than ASCAT, ERS-based 
estimates of the slope/curvature parameters will have a higher uncertainty (variance). This 
could be compensated by increasing the width of the smoothing kernel, which reduces the 
variance at the cost of an increased estimation bias, so there is a trade-off. 
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8.5 Masking of Snow and Frost Conditions  

Two different approaches were tested to improve the masking of snow and frost conditions. 
The first called SSFv2 is based on the SSF developed by and already described in the ATBD 
v.1.0. It is a simplification of the SSF which works through making use of the snow cover and 
frozen land surface flags (climatological flags) to resolve ambiguities in the 
backscatter/temperature relationship. Of the existing 3 decision trees the second is no longer 
necessary in SSFv2 and the other 2 were simplified.  

 

Figure 28: Simplified Decision Tree 1 
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Figure 29: Simplified Decision Tree 3 

The output of the remaining 2 decision trees is checked for consistency by the climatological 
flags. If the probability of snow or frozen surface is higher than 95% no unfrozen flags are 
permitted and if they are less than 5% then no frozen flags are allowed.   

If the freeze/thaw threshold cannot be defined the surface state is determined through the 
climatological flags as explained in the ATBD v.1. §6.2.3.7. 

The second called HMM FT is based on the probabilistic fusion approach developed by 
(Zwieback 2012). It uses a Hidden Markov Model whose transition probabilities are 
determined by ERA-Interim air temperature whereas the emission probabilities are 
determined by the backscatter. Outputs of this algorithm are not fixed flags but probabilities 
for the 3 states frozen, unfrozen and thawed. The state with the highest probability is assigned 
to the observation. 

Classifying the uncertainty of a flag describing the surface state is difficult. Nonetheless a 
quality measure was introduced for both methods. HMM FT produces a probability for the 
favoured state which can be used directly to indicate the certainty of the flag. In the quality 
flag this probability is saved as a value between 50 and 100.  

For SSFv2 the quality of the masking is done quantitative through assigning one of two classes 
based on which parts of the algorithm had to be used to find a SSF. If a flag was found only 
through the decision trees, meaning the backscatter measurements were able to distinguish 
between frozen and unfrozen, then value 100 is assigned. On the other hand, if it had to be 
determined with the help of the climatological flags, value 200 is used. 
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8.5.1 Validation 

Since neither global F/T products nor in situ measurements of the freeze/thaw state through 
e.g. frost tubes were available, temperature had to be used as a proxy for the freeze/thaw 
state of the soil. To ensure comparability with Naeimi et al. (2012) we used also WMO Air 
Temperature and GLDAS Surface Temperature from the years 2007 and 2008. ERA Interim 
data is not used for validation since it is used by the HMM FT algorithm. 

Additionally, soil temperature measurements, taken in a depth of up to 5cm, from 14 in situ 
networks where used. This data was obtained from the ISMN Dorigo et al. (2011). A total of 
577 stations had data available in the period 2007-2011. Since several stations used multiple 
sensors 748 temperature time series of varying length could be used. 

The 3 algorithms all produce a flag that indicates either frozen, unfrozen, melting or unknown 
conditions. For the validation efforts the thawing flag was treated as unfrozen. The 
freeze/thaw states were compared to the different temperature datasets using a simple 
threshold at 0°C according to Table 1. 

Temperature / Flag Frozen Unfrozen 

< 0°C Correct (true positive) Incorrect (false negative) 

> 0°C Incorrect (false positive) Correct (true negative) 

Table 1: Classification of Errors 

Table 2 shows that the SSF algorithm has worse agreement than the other two algorithms with 
both datasets and in all timespans. HMM FT performs better than SSF v2 when compared to 
the WMO stations except for summer when both show similar agreement. When compared 
to GLDAS NOAH soil temperature the 2 algorithms show similar agreement in winter, summer 
and autumn (TSW) but not in spring (TWS). This suggests that the SSF v2 algorithm would need 
refinement when dealing with thawing situations. 
 

WMO  GLDAS NOAH  
SSF SSFv2 HMM FT SSF SSFv2 HMM FT 

Winter  77,87 84,12 87,45 89,52 93,77 93,50 
TWS 71,67 81,57 85,77 68,72 75,66 82,70 
Summer  92,32 98,62 98,64 91,56 97,35 97,88 
TSW  73,41 86,71 88,68 74,16 86,21 86,41 
Overall  81,93 90,26 92,09 84,24 90,75 91,94 

Table 2: Agreement of different algorithms with temperature datasets 

Comparison with the in-situ soil temperature data was only considered on a yearly basis and 
not split up into seasons because the dataset did not have complete temporal coverage for all 
stations. So splitting it up would possibly introduce a bias towards one algorithm. The 
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algorithm by Naeimi et al. (2012) depends on a fit of a logistic function into the relationship of 
temperature and backscatter. Table 2 shows the agreement with the in situ soil temperature 
data split into stations where the SSF algorithm worked, meaning that a logistic function could 
be fit (l) and where it did not work (nl). It also provides values over all stations for SSFv2 and 
HMM FT. 
 

SSF(l)  SSFv2(l)  HMM(l)  SSFv2(nl)  HMM(nl)  SSFv2  HMM  
flag frozen - T < 0°C  12,76 14,23 12,96 9,97 7,62 11,87 10,01 
flag unfrozen - T > 
0°C  

61,52 71,88 73,76 67,2 74,54 69,29 74,19 

flag frozen - T > 0°C  17,66 11,7 9,82 19,64 12,31 16,1 11,2 
flag unfrozen - T < 
0°C  

2,73 2,19 3,46 3,18 5,53 2,74 4,61 

Unknown  5,33 0 0 0 0 0 0 
Agreement  74,28 86,11 86,72 77,17 82,16 81,16 84,2 

Table 3: Agreement in percentage for different algorithms. (l) indicates results over points were a 
logistic function could be fitted and the SSF algorithm works normally. (nl) are the results for points 
were no logistic function could be fitted indicating a weak relationship between backscatter and 
temperature. Results without brackets are the average of all stations. 

Real spatial comparison could only be done with the GLDAS NOAH dataset. Figures 26 – 28 
show the differences between the agreements to the temperature data. In most regions SSF 
performs worse than both SSFv2 and HMM FT. The SSF algorithm works very well in northern 
latitudes where none of the other algorithms provides big improvements. This is not the case 
for temperate regions where both HMMFT and SSFv2 agree better with GLDAS NOAH soil 
temperature than SSF. The difference between the 2 new algorithms is not very big except for 
spring. 
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Figure 30:  Agreement with GLDAS NOAH soil temperature. SSFv2 – SSF 

 

 

Figure 31: Agreement with GLDAS NOAH soil temperature. HMM FT – SSF 
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Figure 32:  Agreement with GLDAS NOAH soil temperature. HMM FT - SSFv2 

Generally HMM FT is the preferred method since it delivers probabilistic information and not 
only flags. It is planned to implement this method in the current WARP processing package. 
This will require rewriting parts of the code and improving the performance of the current 
implementation. In the meantime SSFv2 will be used since it is already implemented in a way 
that is compatible to the WARP framework. 

8.6 Improved Resampling of Active Data to the DGG in WARP 5.5 

The task of resampling is to interpolate L1 scatterometer measurements given in the orbit grid 
to a fixed Discrete Global Grid (DGG), on which all further WARP-processing takes place. The 
resampling requires the retrieval of the nearest neighbours (NN) of each orbit point, which is 
a time consuming operation. In WARP 5.4, NN-candidates within a given radius were 
computed based on the known properties of the DGG. However, the WARP 5.4 
implementation of the NN-search suffers from several problems, namely it 

• misses NNs, especially in high latitudes, 
• cannot deal with the discontinuity at +180/-180 degrees longitude, 
• is relatively slow, and, most important, 
• is specific to the DGG, i.e., it can handle no other grids, 

 
whereby the last shortcoming is also the most severe one. 
 
In WARP 5.5, the NN-search has been completely rewritten and is now based on a KD-tree. A 
KD-tree is a data structure that organises multi-dimensional data in such a way that area 
searches or NN-searches can be done very efficiently; it can be seen as a generalisation of the 
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well-known binary search tree to more than one dimension. Because an IDL-implementation 
would have been too slow, the KD-tree was implemented in C++, and compiled into a DLL 
which is called from IDL via the IDL-C-bridge. Each point is represented by a four-dimensional 
feature vector, containing the sine and cosine of its longitude and latitude, respectively. This 
way, the grid representation becomes continuous, and the data are spread more evenly over 
the feature space, resulting in better KD-tree performance.  
 
To summarise: the KD-tree based implementation is approximately 20% faster than its WARP 
5.4 predecessor, is not plagued by discontinuities and returns all NNs within a given radius (no 
misses). Also, the approach is completely general, i.e., it works with any grid, not just the DGG. 
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