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A Bleak Record

( Gordon, 2016)

◮ Difficult to explain these trends with mismeasurement of productivity.

◮ What is going on?



Even Worse in the Labor Market
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◮ The data points to anemic growth of labor demand from 1987 to 2017.

◮ Labor demand roughly stagnant since 2000.



Wages

◮ Technology of the last several decades, as opposed to what we used to
have, looks nothing like a tide lifting all boats.
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Displacement: Not Just a US Phenomenon

◮ Similar polarization of employment— but not of wages, indicating an
important role for labor market institutions.

(Acemoglu and Autor, 2011)



Thinking in Terms of Tasks: Motivation

◮ Production requires a range of tasks or industrial processes.

◮ Automation in history: machines and computers used to substitute for
human labor in an expanding range of tasks:

1. In agriculture, horse-powered reapers, harvesters, and threshing
machines replaced manual labor working with rudimentary tools.

2. Machine tools, such as lathes and milling machines, replaced
labor-intensive production techniques relying on skilled artisans.

3. Industrial robotics automated remaining labor-intensive processes in
some industries: welding, machining, assembly, and packaging.

4. Software automated routine tasks performed by white-collar workers in
clerical and sales jobs.

◮ But at the same time, new tasks in which labor has a comparative
advantage have created employment opportunities.



Thinking in Terms of Tasks: Automation

◮ Examples of automated tasks: assembly, switchboard operation, mail
sorting, packing, stock trading, dispensing cash, operating machines.



Thinking in Terms of Tasks: Just a Tiny Bit of Math

◮ Output produced according to

Y =

(
∫

N

N−1

Y (z)
σ−1

σ dz

)

σ

σ−1

,

where Y (z) denotes the output of task z for z ∈ [N − 1,N] and σ ≥ 0
is the elasticity of substitution between tasks.

◮ Tasks can be produced using capital or labor:

Y (z) =

{

ALγL(z)l(z) + AKγK (z)k(z) if z ∈ [N − 1, I ]
ALγL(z)l(z) if z ∈ (I ,N].

◮ I = automation; N =new tasks.

◮ γL(z)/γK (z) is increasing in z , so that labor has a comparative

advantage in higher-indexed tasks, and that γL(z) increasing in z .

◮ Assume new tasks are used immediately and capital used up to task I .



Thinking in Terms of Tasks: Automation and New Tasks

◮ Capital, K , used on tasks [N − 1, I ]; labor, L, used on tasks (I ,N].

◮ Automation squeezes labor into a smaller set of tasks.
◮ The creation of new tasks in which labor has a comparative advantage

expands the set of tasks for labor.



Thinking in Terms of Tasks: Automation

◮ Effect of automation on the labor demand:

Effect of automation on labor demand = Productivity effect+ Displacement

◮ The displacement effect is always negative.

◮ Without the displacement effect, the labor share would remain
constant. With the displacement effect, the labor share declines.

◮ If the displacement effect is large, labor demand declines even though
we have technological progress.

◮ Worst-case scenario for labor: “so-so technologies,” large displacement
effect and small productivity gains.



Thinking in Terms of Tasks: New Tasks

◮ The effects of creation of new tasks in which labor has a competitive
advantage—an expansion in N—can be determined similarly.

Effect of new tasks on labor demand = Productivity effect + Reinstatement

◮ The reinstatement effect is always positive.

◮ Without the reinstatement effect, the labor share in value added would
remain constant.

◮ With the reinstatement effect, the labor share always increases.



Multi-Sector Economy: Summary

◮ Consider a multi-sector economy.

◮ Changes in economy-wide labor demand, WL, can be decomposed as:

Overall change in labor demand = Productivity effect

+ Composition effect

+ Substitution effects

+ Change in task content



Patterns in Labor Share 1947-1987
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Figure: The labor share and sectoral evolutions, 1947-1987.



Decomposing Labor Demand, 1947-1987
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Figure: Sources of changes in labor demand, 1947-1987.



Displacement and Reinstatement, 1947-1987

◮ Change in task content=displacement + reinstatement.

◮ Requires two additional assumptions:

1. no technological regress

2. at a point in time, an industry either automates or creates new tasks
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Figure: Estimates of the displacement and reinstatement effects, 1947-1987.



Patterns in Labor Share, 1987-2017
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Figure: The labor share and sectoral evolutions, 1987-2017.



Decomposing Labor Demand, 1987-2017
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Figure: Sources of changes in labor demand, 1987-2017.



Displacement and Reinstatement, 1987-2017
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Figure: Estimates of the displacement and reinstatement effects, 1987-2017.



Explaining Changes in Task Content: Automation
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Figure: Automation technologies and change in the task content of production.



Explaining Changes in Task Content: New Tasks
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Decomposing Labor Demand: Decomposition, 1850-1910
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Will AI Make Things Even Worse?

I Perhaps. Automation is one of the things AI technologies are targeting.

I But AI is a general technological platform, and it can be used in many
different ways (for example, in education and health care).

I The study of AI is hampered by the fact that it is just getting going and there
are no good datasets of AI adoption.

I But we can get the first glimpse of the implications of AI from online vacancy
postings, which show a surge in AI-related postings.



AI Vacancies Over Time
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narrow AI vacancies up from 0.1% to 0.6%
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AI Vacancies Over Time
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AI vacancies rising in retail, wholesale, manufacturing, finance,
information technologies, business services
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Exposure to Opportunities for AI

AI exposure measure at the establishment level, s:

AI exposurest0 = ∑
j

Share postingsjst0 ×AI Occupational Impactj

Summation runs over 815 detailed occupations, j .

AI Occupational Impactj stands for Felten et al.’s measure.

AI exposure measure based on t0 = 2010− 2012 job postings or
t0 = 2007 in robustness exercises.

Establishments with a higher AI exposurest0 have greater
opportunities to replace some of their current workers with AI
software as these algorithms improve.

We standardize exposure measure across establishments to ease
interpretation.
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Opportunities for Substitution and AI Postings
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Opportunities for Substitution and AI Postings
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At-Risk Jobs Decline
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At-risk jobs: top 50% occupations with the highest AI impact according to
Felten et al.
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Not-At-Risk Jobs Expand
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Not-at-risk jobs: bottom 50% occupations with the lowest AI impact
according to Felten et al.
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Explaining Rise in Postings of Not-at-risk Jobs

0

20

40

60

Bottom Tercile Middle Tercile Top Tercile

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t b

y 
B

as
el

in
e 

W
ag

e 
Te

rc
ile

Regression of Not−At−Risk Vacancy Growth (\%) on AI Exposure

Note: Controls for deciles of firm size, sales + admin baseline shares, CZ and 4 digit industry FEs

But rise more pronounced among low-wage occupations.
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No Effect on Overall Postings
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Will AI Make Things Even Worse? What We Know so Far

I Evidence that AI is displacing some jobs, but also some job creation.

I However, new jobs seem to come from the lower end of the skill and wage
distribution.

I Still early days.

I Critical may be the impact of AI on productivity.



Why Has Productivity Growth Been so Bad Lately?

◮ Prospects for future productivity growth?

◮ The pessimistic view: because the new technologies are not worth that
much (e.g., Gordon).

...But then why are firms adopting them and shedding labor?

◮ The optimistic view: it’s all temporary.

...But this has been going on for quite a while as we have seen.

◮ Three possibilities in a world of replacing technologies:

1. so-so technologies;

2. the wrong kinds of innovation;

3. bottlenecks.



The Wrong Kinds of Innovation

◮ New tasks: source of comparative advantage for labor and
productivity growth:

◮ But if we are devoting too much resources to replace tasks and not
enough for creating new tasks, both labor and productivity will suffer.

◮ Most evident in the area of AI, which can be used not just for
replacement but for creating new tasks and functions.



Engel’s Pause: Bottlenecks Again?

◮ Parallels to “Engel’s pause”: No wage growth from the beginning of
the Industrial Revolution around 1760 to about 1850 despite very rapid
technological change and technology adoption in Britain.

◮ Why? Partly because the demand for labor did not build up sufficiently
or new technologies were not properly implemented while employers
were experimenting with the new technologies.

◮ But all of the above bottlenecks were important also — the real
productivity gains were not fully realized until many sectors started
improving together; organizations changed; there was an institutional
revolution, including major democratizations and bureaucratic reforms
and the beginnings of the fiscal state; and mass schooling.

◮ Perhaps our progress will be as in the case of Engel’s pause, or will it?




