Challenges with Seasonal Adjustment

Tucker McElroy (U.S. Census Bureau)

FESAC Meeting December 9, 2016

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

Disclaimer

This presentation is released to inform interested parties of research and to encourage discussion. The views expressed on statistical issues are those of the authors and not necessarily those of the U.S. Census Bureau.

- Frequency Aggregation
- Cross-sectional Aggregation
- Seasonal Heteroscedasticity
- Improved Methodology?

- Nonseasonal monthly series that become seasonal when aggregated to quarterly frequency
- Nonseasonal series that whose aggregate across cross-sections (region, industry, etc.) is seasonal
- Seasonal series deemed nonseasonal by conventional diagnostics

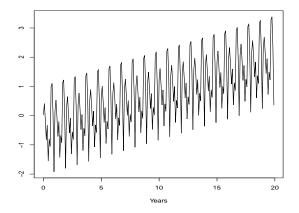
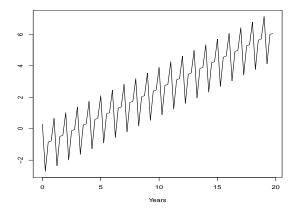



FIGURE: Simulated monthly series with salient seasonality (and trend).

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

FIGURE: Simulated monthly series, which has been quarterly aggregated.

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

FIGURE: Simulated monthly series, consisting of original series plus noisy

"quota" United States" Census Bureau

series.

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

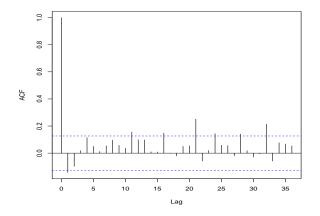


FIGURE: Autocorrelation plot of noisy monthly series. (Big spikes at lags 12, 24, and 36 would indicate seasonality.)

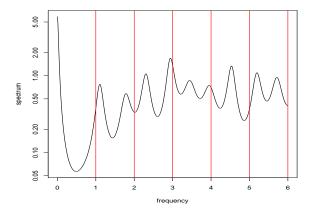


FIGURE: Spectral density plot of noisy monthly series. (Big spikes at seasonal frequencies 1, 2, 3, 4, 5, 6 in red would indicate seasonality.)

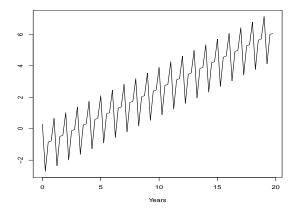


FIGURE: Quarterly aggregation of nonseasonal noisy monthly series.

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

Summary:

- "Quota" series generated by random values of first two months of each quarter, but with third month equal to negative of sum of other two months
- Exhibit noisy monthly series with NO apparent seasonality (by conventional diagnostics)
- This noisy monthly series aggregates to a quarterly series with strong seasonality
- How can we detect such features in the monthly data, before quarterly aggregation?

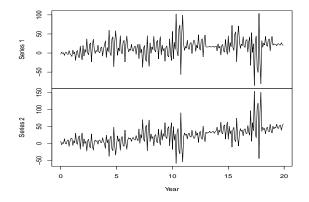
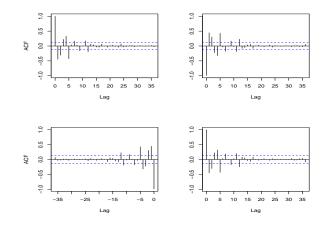



FIGURE: Simulated bivariate monthly series without salient seasonality

(but mild trend). United States" Economics an U.S. Departm Economics an U.S. CENSTS BU

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

 $\ensuremath{\operatorname{Figure:}}$ Acf plot of differenced bivariate monthly series. (Big spikes at

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

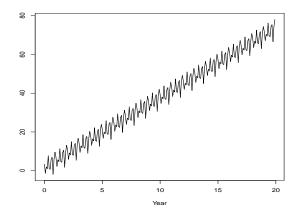


FIGURE: Plot of sum of nonseasonal bivariate monthly series.

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

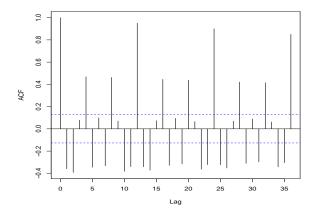


FIGURE: Acf plot of differenced aggregate monthly series. (Big spikes at lags 12, 24, and 36 indicate seasonality.)

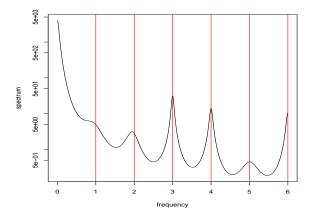
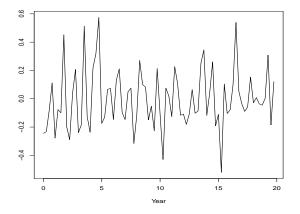



FIGURE: Spectral density plot of aggregate monthly series. (Big spikes at seasonal frequencies 1, 2, 3, 4, 5, 6 in red indicate seasonality.)

Summary:

- Construction proceeds by adding and subtracting the same white noise to seasonal persistency of each series
- Exhibit two monthly series with NO apparent seasonality (by conventional diagnostics)
- These monthly series aggregate to a monthly series with strong seasonality
- How can we detect such features in the monthly data, via a bivariate analysis?

FIGURE: Simulated quarterly series. Is it even seasonal?

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

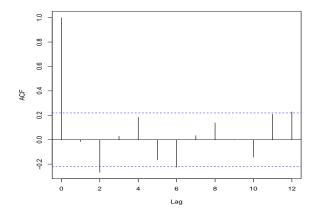


FIGURE: Acf plot of simulated quarterly series. (Big spikes at lags 4, 8, and 12 would indicate seasonality.)

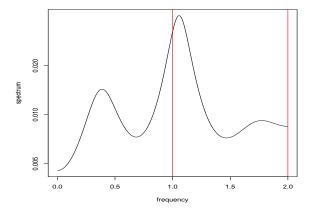


FIGURE: Acf plot of simulated quarterly series. (Big spikes at seasonal frequencies 1 and 2 in red would indicate seasonality.)

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU

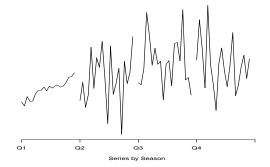


FIGURE: Annual series for each quarter. Q1 is persistent, indicating seasonality, whereas other quarters are non-persistent, and hence non-seasonal.

Census Bureau

Summary:

- Construction proceeds by making persistent Q1 effect, and composing with noisy series for other quarters
- Composition appears to have some dynamic seasonality, but diagnostics are ambiguous
- ► Isolating individual quarters' series makes Q1 persistence clear

CRITERIA FOR IMPROVED METHODOLOGY

- 1. Simplicity (non model-based)
- 2. Continuum (non-seasonal to seasonal)
- 3. Idempotent (sa same as non-seasonal)
- 4. Generality (includes classical methods as special cases, and explains their failure)
- 5. Measure (defines seasonality)
- 6. Diagnostic (tools for assessing seasonality)
- 7. Uncertainty (quantifies error in adjusting)
- 8. Flexibility (explains stable, dynamic, seasonal break, changing amplitude, seasonal hetero, frequency agg, cross agg, et al)

Seasonal Vector Form: series $\{X_t\}$ with *p* seasons per cycle is embedded as *p*-variate vector time series

$$\mathbf{X}_n = U y_n$$

where U is $p \times r$ (seasonal patterns), y_n is $r \times 1$ (seasonal persistence). This can be adapted when trend structures are present. U and y_n can be computed by SVD of data matrix (Lin, Huang, and McElroy).

Useful?: helped me construct the counter-examples of this talk – therefore useful, at a minimum, conceptually

Census Bureau

- Fixed effects in y_n (e.g., linear trend) correspond to deterministic (predictable) seasonality
- Stochastic portion of y_n with high autocorrelation (spectral mass at frequency zero) corresponds to persistent dynamic seasonal phenomena
- White noise portion of y_n correponds to nonseasonal component

Seasonal Adjustment: whitening the seasonal persistence

- 1. Which agencies have data exhibiting some of these problems? (Can you share)
- 2. How are the issues resolved now, using software of the classical approaches (e.g., X-12-ARIMA, SEATS, STAMP)?
- 3. How do we communicate these issues to "man on the street"?

Contact: tucker.s.mcelroy@census.gov

