FINANCIAL SECTOR STATISTICS AND SYSTEMIC RISK

Arvind Krishnamurthy, Northwestern University and NBER

US Federal Economic Statistics Advisory Committee US Bureau of Labor Statistics Washington, D.C. June 17, 2011

Introduction

- □ The financial crisis revealed that
 - 1. We do not currently collect the right data to understand crises.
 - Derivatives, liquidity
 - We need to look at the data through models, because <u>systemic risk</u> is a general equilibrium phenomenon,
 - And, we need to build these models.

Measurement and the Crisis

- Current systems (Bank Call Reports; Flow of Funds; FASB) are outdated.
 - They are based on measuring stocks of cash-assets
 - Derivatives and structured products render these systems less useful.
 - No measurements of or data on liquidity.

"Leverage" Example

- □ Firm has:
 - \$20 equity and \$80 debt; the debt is 5-yr @4.5%.
 - □ firm buys \$100 of Treasuries and writes protection on 100 investment-grade US corps each with a notional of \$10; weighted average CDS premium 5%.
- □ Accounting leverage = 5X
 - But the risk in this firm is all in the CDS

"Leverage" Example continued

- If 4 firms in the CDS portfolio fail with 50% recovery,
 - ➡ loss of \$20
 - equity wiped out.
- not picked up by current methods.
- Synthetic leverage

□ Liquidity risk...

Liquidity Risk Example

- □ A firm has:
 - \$20 of equity and \$80 of debt; half the debt is <u>overnight</u> repo financed at 1% and the other half is a 5-yr bond at 4.5%.
 - Assets are \$50 ABS, financed via repo at 0 haircut and a \$50 loan for 1-yr at 5%.
- Standard measures do not measure "liquidity" and so do not detect the sensitivity to, say, an increase in repo haircuts.

Example-continued

- We propose a Liquidity Mismatch Index, based on liquidity weights.
 - The ABS weight may be $\lambda_{ABS} = 0.9$, so asset liquidity is \$45. On the liability side, the ABS bond is funded via repo, with $\lambda_{repo} = 1.0$ or -\$50.
 - Net liquidity is -\$5.
- If repo haircuts suddenly increase to 20%, then λ_{ABS} =0.8 and the net position is -\$10.

See Brunnermeier, Gorton, Krishnamurthy, "Liquidity Mismatch Index"

Leverage/Derivatives continued

- CDS on 100 investment grade names
- Standard collateralization agreements require
 - If firm is downgraded, the firm will have to immediately come up cash to post as collateral
 - If credit risk on underlying firms increases, need for cash as collateral
- Liquidity risk:
 - Conceptually similar to the case that the firm faces funding difficulty in rolling over-night repo and needs to come up with cash.

What data should be collected?

- Many possibilities, but -
 - Answer should be informed by theory
 - Should be publicly available for research
 - Suitably anonymized, and released with a lag
 - Should be useful for model building
- Systemic risk involves endogenous responses, feedbacks, to buildups of risk.

Systemic risk

□ Data question:

How much will the commercial banking sector lose (through loans, derivatives, structured product holdings) if real estate values decline by 20%?

Systemic risk question:

How might banks behave (shed assets, raise lending standards, hoard liquidity), with such a shock?

What is the resulting general equilibrium?

Models

- We need data to help inform the development of models with which to measure systemic risk
- Various proposed amplification mechanisms
 (Diamond and Dybvig; Bernanke, Gertler, & Gilchrist;
 Kiyotaki and Moore):
 - Net worth
 - Short-term debt
 - Leverage
 - Collateral value

Liquidity Capital

Step 1: Collect Risk Management Data

- Elicit the response (delta) of <u>firm value</u> and <u>liquidity</u>
 to each stress scenario.
 - Report change in firm value and liquidity index when factor changes by 5%, 10%, -5%, -10%.
- Orthogonal scenarios:
 - Market factors: interest rates, FX rates, real estate prices, etc.
 - Idiosyncratic risks: Firm failures, counterparty failures, clearinghouse failure.
 - Liquidity risk scenarios: Repo haircuts increase; short-term debt markets freeze; can't issue debt.
 - Note: Most financial firms do something along these lines currently, for internal risk management

Step 2: System-Wide Response

- Risk measures aggregate across firms and sectors.
 - What is overall net sensitivity to a, say, 10% fall in real estate prices?
 - Risk change over the cycle?
 - How interconnected?
- Liquidity measures aggregate: "response indicator"
 - Banks net short liquidity.
 - But, to whom, and how much?

Modeling systemic risk

- Collection of data regularly, over time, creates a panel data set for modeling of macro risk.
 - By regulators
 - By academics
 - By industry
- View data through lens of models to understand systemic risk
 - What is the resulting general equilibrium?

Summary

- Existing measures outdated
 - Imperative to measure derivatives and liquidity
- We propose a measurement system
 - Builds from internal risk management reports
 - Data as suggested by theories of systemic risk
- Data should be publicly available
 - Essential for deepening understanding of systemic risk
- Brunnermeier, Gorton, Krishnamurthy: "Risk Topography"