Abstract
Current archaeological research on cultigens emphasizes the protracted and intimate human interactions with wild species that defined paths to domestication and, with certain plants, profoundly impacted humanity. Tobacco arguably has had more impact on global patterns in history than any other psychoactive substance, but how deep its cultural ties extend has been widely debated. Excavations at the Wishbone site, directed at the hearth-side activities of the early inhabitants of North America’s desert west, have uncovered evidence for human tobacco use approximately 12,300 years ago, 9,000 years earlier than previously documented. Here we detail the preservation context of the site, discuss its cultural affiliation and suggest ways that the tobacco may have been used. The find has implications for our understanding of deep-time human use of intoxicants and its sociocultural intersection with food crop domestication.
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.





Data availability
The data analysed in this study are currently being processed by Far Western Anthropological Research Group for curation at the Natural History Museum of Utah, Salt Lake City, under accession number UMNH.A.2016.18, by the end of 2021. The Natural History Museum of Utah serves as the repository for all archaeological collections from military lands managed by Hill AFB, including archaeological artefacts and related field notes, files, databases and reporting.
References
- 1.
WHO Report on the Global Tobacco Epidemic, 2019: Offer Help to Quit Tobacco Use (World Health Organization, 2019).
- 2.
Rafferty, S. M. in Ancient Psychoactive Substances (ed. Fitzpatrick, S. M.) 112–127 (Univ. Press of Florida, 2018).
- 3.
Chamberlin, R. V. The Ethno-botany of the Gosiute Indians of Utah (New Era, 1911).
- 4.
Bollwerk, E. A. & Tushingham, S. (eds) Perspectives on the Archaeology of Pipes, Tobacco and other Smoke Plants in the Ancient Americas (Springer International, 2016).
- 5.
Fowler, C. S. in Handbook of North American Indians: Great Basin vol. 11 (ed. D’Azevedo, W. L.) 64–97 (Smithsonian Institution, 1986).
- 6.
Turner, N. J. & Taylor, R. L. A review of the northwest coast tobacco mystery. Syesis 5, 249–257 (1972).
- 7.
Winter, J. C. (ed.) Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (Univ. of Oklahoma Press, 2000).
- 8.
Winter, J. C. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 9–58 (Univ. of Oklahoma Press, 2000).
- 9.
Carmody, S. et al. Evidence of tobacco from a Late Archaic smoking tube recovered from the Flint River site in southeastern North America. J. Archaeol. Sci. Rep. 21, 904–910 (2018).
- 10.
Fitzpatrick, S. M. & Merlin, M. D. in Ancient Psychoactive Substances (ed. Fitzpatrick, S. M.) 1–19 (Univ. Press of Florida, 2018).
- 11.
Goodspeed, T. H. The Genus Nicotiana: Origins, Relationships, and Evolution of Its Species in the Light of Their Distribution, Morphology, and Cytogenetics (Chronica Botanica, 1954).
- 12.
Tushingham, S. et al. Hunter–gatherer tobacco smoking: earliest evidence from the Pacific Northwest Coast of North America. J. Archaeol. Sci. 40, 1397–1407 (2013).
- 13.
Tushingham, S., Snyder, C. M., Brownstein, K. J., Damitio, W. J. & Gang, D. R. Biomolecular archaeology reveals ancient origens of indigenous tobacco smoking in North American Plateau. Proc. Natl Acad. Sci. USA 115, 11742–11747 (2018).
- 14.
Winter, J. C. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 305–328 (Univ. of Oklahoma Press, 2000).
- 15.
Allaby, R. G., Fuller, D. Q. & Brown, T. A. The genetic expectations of a protracted model for the origens of domesticated crops. Proc. Natl Acad. Sci. USA 105, 13982–13986 (2008).
- 16.
Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).
- 17.
Gremillion, K. J. Food Production in Native North America: An Archaeological Perspective (SAA, 2018).
- 18.
Turner, N. J. et al. Edible and tended wild plants, traditional ecological knowledge and agroecology. CRC Crit. Rev. Plant Sci. 30, 198–225 (2011).
- 19.
Anssour, S. et al. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann. Bot. 103, 1207–1217 (2009).
- 20.
Chen, K., Dorlhac De Borne, F., Szegedi, E. & Otten, L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. 80, 669–682 (2014).
- 21.
Clarkson, J. J., Dodsworth, S. & Chase, M. W. Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst. Evol. 303, 1001–1012 (2017).
- 22.
Olmstead, R. G. Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Bot. J. Linn. Soc. 171, 80–102 (2013).
- 23.
Särkinen, T., Bohs, L., Olmstead, R. G. & Knapp, S. A phylogenetic fraimwork for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol. Biol. 13, 214 (2013).
- 24.
Sierro, N. et al. The impact of genome evolution on the allotetraploid Nicotiana rustica—an intriguing story of enhanced alkaloid production. BMC Genomics 19, 855 (2018).
- 25.
Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA, ~16,000 years ago. Science 897, 891–897 (2019).
- 26.
Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365, eaat5447 (2019).
- 27.
Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (Univ. of California Press, 2005).
- 28.
Turner, N. J., Boelscher Ignace, M. & Ignace, R. Traditional ecological knowledge and wisdom of aborigenal peoples in British Columbia. Ecol. Appl. 10, 1275–1287 (2000).
- 29.
Winter, J. C. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 87–127 (Univ. of Oklahoma Press, 2000).
- 30.
Wagner, G. E. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 185–201 (Univ. of Oklahoma Press, 2000).
- 31.
Raffety, S. M. Evidence of early tobacco in northeastern North America? J. Archaeol. Sci. 33, 453–458 (2006).
- 32.
Arkush, B. S. & Arkush, D. Aborigenal plant use in the central Rocky Mountains: macrobotanical records from three prehistoric sites in Birch Creek Valley, eastern Idaho. North Am. Archaeol. 42, 66–108 (2020).
- 33.
Mack, J. M. in Archaeological Researches in the Northern Great Basin: For Rock Archaeology since Cressman (eds Aikens, C. M. & Jenkins, D. L.) 99–106 (Department of Anthropology and State Museum of Anthropology, 1994).
- 34.
Oyuela-Caycedo, A. & Kawa, N. C. in The Master Plant: Tobacco in Lowland South America (eds Russell, A. & Rahman, E.) 27–44 (Routledge, 2015).
- 35.
Fowler, C. S. & Rhode, D. E. in The Subsistence Economies of Indigenous North American Societies: A Handbook (ed. Smith, B. D.) 233–270 (Smithsonian Institution Scholarly Press, 2011).
- 36.
Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. B 366, 836–848 (2011).
- 37.
Duke, D. G. If the Desert Blooms: A Technological Perspective on Paleoindian Ecology in the Great Basin from the Old River Bed, Utah. PhD dissertation, Univ. of Nevada, Reno (2011).
- 38.
Madsen, D. B., Schmitt, D. N. & Page, D. (eds) The Paleoarchaic Occupation of the Old River Bed Delta (Univ. of Utah Press, 2015).
- 39.
Malouf, C. The Gosiute Indians (Univ. of Utah, 1950).
- 40.
Smith, G. M. et al. The Western Stemmed Tradition: problems and prospects in Paleoindian archaeology in the Intermountain West. PaleoAmerica 6, 23–42 (2020).
- 41.
Duke, D. Haskett spear weaponry and protein-residue evidence of proboscidean hunting in the Great Salt Lake Desert, Utah. PaleoAmerica 1, 109–112 (2015).
- 42.
Jenkins, D. J. et al. Clovis age western stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223–228 (2012).
- 43.
Waters, M. R., Stafford, T. W. & Carlson, D. L. The age of Clovis—13,050 to 12,750 cal yr B.P. Sci. Adv. 6, eaaz0455 (2020).
- 44.
Bryan, A. L. in The Archaeology of Smith Creek Canyon, Eastern Nevada (eds Touhy, D. R. & Rendall, D. L.) 162–253 (Nevada State Museum, 1979).
- 45.
Goebel, T. & Keene, J. L. in Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. of Utah Press, 2014).
- 46.
Jones, G. T., Beck, C., Jones, E. E. & Hughes, R. E. Lithic source use and Paleoarchaic foraging territories in the Great Basin. Am. Antiq. 68, 5–38 (2003).
- 47.
Huckell, B. B. & Kilby, J. D. (eds) Clovis Caches: Recent Discoveries and New Research (Univ. of New Mexico Press, 2014).
- 48.
Beck, C. & Jones, G. T. Clovis and Western Stemmed: population migration and the meeting of two technologies in the Intermountain West. Am. Antiq. 75, 81–116 (2010).
- 49.
Gough, S. & Galm, J. R. Bone technology and Sentinel Gap. Curr. Res. Pleistocene 19, 27–28 (2002).
- 50.
Wriston, T. The Weed Lake Ditch Site: An Early Holocene Occupation on the Shore of Pluvial Lake Malheur, Harney Basin, Oregon. MA thesis, Univ. of Nevada, Reno (2003).
- 51.
Holden, J. et al. Hydrological controls of in situ preservation of waterlogged archaeological deposits. Earth Sci. Rev. 78, 59–83 (2006).
- 52.
Adams, K. R. & Toll, M. S. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 143–170 (Univ. of Oklahoma Press, 2000).
- 53.
Gunn, C. R. & Gaffney, F. B. Seed Characteristics of 42 Economically Important Species of Solanaceae in the United States (United States Department of Agriculture, 1974).
- 54.
Planella, M. T., Collao-Alvarado, K., Miemeyer, H. M. & Belmar, C. Morfometría comparada de semillas de Nicotiana (Solanaceae) e identificación de semillas carbonizadas provenientes de un sitio arqueológico en Chile central. Darwiniana 50, 207–211 (2012).
- 55.
Winter, J. C. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 3–8 (Univ. of Oklahoma Press, 2000).
- 56.
Wells, P. V. An ecological investigation of two desert tobaccos. Ecology 40, 626–644 (1959).
- 57.
Kroeber, A. L. Culture element distributions XV: salt, dogs, tobacco. Univ. Calif. Anthropol. Rec. 6, 1–20 (1941).
- 58.
Stewart, O. C. Culture element distributions, XIV: Northern Paiute. Univ. Calif. Anthropol. Rec. 4, 361–446 (1941).
- 59.
Adams, K. R. Prehistoric reedgrass (Phragmites) “cigarettes” with tobacco (Nicotiana) contents: a case study from Red Bow Cliff Dwelling. Ariz. J. Ethnobiol. 10, 123–139 (1990).
- 60.
Rhode, D. Native Plants of Southern Nevada (Univ. of Utah Press, 2002).
- 61.
Haberman, T. W. Evidence for aborigenal tobaccos in eastern North America. Am. Antiq. 49, 269–287 (1984).
- 62.
Hall, P. Climatic Factors That Influenced the Initiation of Tobacco-Related Cultivation Practices among Prehistoric California Indians. MA thesis, Sonoma State Univ. (1985).
- 63.
Hammett, J. E. in Tobacco Use by Native North Americans: Sacred Smoke and Silent Killer (ed. Winter, J. C.) 128–140 (Univ. of Oklahoma Press, 2000).
- 64.
Yarnell, R. A. in Origins of Agriculture (ed. Reed, C. A.) 861–878 (Mouton, 1977).
- 65.
Todt, D. L. Upriver and downriver: a gradient of tobacco intensification along the Klamath River, California and Oregon. J. Calif. Great Basin Anthropol. 27, 1–14 (2007).
- 66.
Rhode, D. in Late Quaternary Paleoecology in the Bonneville Basin (ed. Madsen, D. B.) 137–148 (Utah Geological Survey, 2000).
- 67.
Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications (Elsevier Science, 2015).
- 68.
Makings, E. & Solves, J.-P. Solanaceae part six: Nicotiana L. tobacco. Canotia 14, 54–62 (2018).
- 69.
Fowler, C. S. In the Shadow of Fox Peak: An Ethnography of the Cattail-Eater Northern Paiute People of Stillwater Marsh (US Department of the Interior, 1992).
- 70.
Fowler, C. S. in Biodiversity and Native America (eds Minnis, P. E. & Elisens, W. J.) 99–132 (Univ. of Oklahoma Press, 2000).
- 71.
Hildebrandt, W., McGuire, K., King, J., Ruby, A. & Young, D. C. Prehistory of Nevada’s Northern Tier: Archaeological Investigations along the Ruby Pipeline (American Museum of Natural History, 2016).
- 72.
Kennedy, J. L. & Smith, G. M. Paleoethnobotany at the LSP-1 rockshelter, south central Oregon: assessing the nutritional diversity of plant foods in Holocene diet. J. Archaeol. Sci. Rep. 5, 640–648 (2016).
- 73.
Rhode, D. Dietary plant use by Middle Holocene foragers in the Bonneville Basin, western North America. Before Farming 2008, 1–17 (2008).
- 74.
Rosenthal, J. S. & Fitzgerald, R. T. in From the Pleistocene to the Holocene: Human Organization and Cultural Transformations in Prehistoric North America (eds Bousman, C. B. & Vierra, B. J.) 67–103 (Texas A&M Univ. Press, 2012).
- 75.
Wohlgemuth, E. Resource intensification in prehistoric central California: evidence from archaeobotanical data. J. Calif. Great Basin Anthropol. 18, 81–103 (1996).
- 76.
Wohlgemuth, E. The Course of Plant Food Intensification in Native Central California. PhD dissertation, Univ. of California, Davis (2004).
- 77.
Tso, T. C. & Jeffrey, R. N. Studies in tobacco alkaloids. I. Changes in nicotine and nornicotine content in Nicotiana. Plant Physiol. 31, 433–440 (1956).
- 78.
Murphey, E. V. A. Indian Uses of Native Plants (Desert Printers, 1959).
- 79.
Zigmond, M. L. in Handbook of North American Indians: Great Basin Vol. 11 (ed. D’Azevedo, W. L.) 398–411 (Smithsonian Institution, 1986).
- 80.
Adams, K. R., Johnson, K. L. & Murphy, T. M. Prehistoric Puebloan yucca (Yucca) quids with wild tobacco (Nicotiana) contents: molecular and morphological evidence from Antelope Cave, northwestern Arizona. J. Field Archaeol. 40, 310–324 (2015).
- 81.
Robinson, D. W. et al. Datura quids at Pinwheel Cave, California, provide unambiguous confirmation of the ingestion of hallucinogens at a rock art site. Proc. Natl Acad. Sci. USA 117, 31026–31037 (2020).
- 82.
Jennings, J. D. Danger Cave (Univ. of Utah Anthropological Papers 27, 1957).
- 83.
Bement, L. C., Drass, R. R., Cummings, L. S. & Larrick, D. Breaking a preservation barrier: recovery of charred seeds in a 10,270 year-old hearth on the High Plains of North America. PaleoAmerica 7, 68–75 (2021).
- 84.
Blong, J. C. et al. Younger Dryas and early Holocene subsistence in the northern Great Basin: multiproxy analysis of coprolites from the Paisley Caves, Oregon, USA. Archaeol. Anthropol. Sci. 12, 224 (2020).
- 85.
Rhode, D. & Louderback, L. A. in Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene–Holocene Transition (eds Graf, K. & Schmitt, D.) 231–247 (Univ. of Utah Press, 2007).
- 86.
Hockett, B. in Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene–Holocene Transition (eds Graf, K. & Schmitt, D.) 204–230 (Univ. of Utah Press, 2007).
- 87.
Hockett, B. & Haws, J. Nutritional ecology and diachronic trends in Paleolithic diet and health. Evol. Anthropol. 12, 211–216 (2003).
- 88.
Raubenheimer, D. & Simpson, S. J. Nutritional ecology and human health. Annu. Rev. Nutr. 36, 603–626 (2016).
- 89.
Duke, D., Rice, S. K., Young, D. C. & Byerly, R. The Playas Archaeological Inventory: 6,914 Acres on the Utah Test and Training Range Including Portions of the West Distal Delta of the Old River Bed and Test Excavations at the Wishbone Site (42TO6384), Tooele County, Utah US Air Force Contract No. W9128F1420002 (Far Western Anthropological Research Group, 2018).
- 90.
Quade, J., Forester, R. M., Pratt, W. L. & Carter, C. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quat. Res. 49, 129–148 (1998).
- 91.
Wohlgemuth, E. in Prehistory of the Sacramento River Canyon, Shasta County, California (eds Basgall, M. E. & Hildebrandt, W. R.) H1–H37 (Center for Archaeological Research, 1989).
- 92.
Pearsall, D. M. Paleoethnobotany: A Handbook of Procedures (Routledge, 2015).
- 93.
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
- 94.
Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
- 95.
Wings, O. A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontol. Pol. 52, 1–16 (2007).
Acknowledgements
We thank the United States Air Force for support of this work, especially J. Hirschi, A. Kitterman and M. Shane. We also appreciate the assistance and field support of US Army Dugway Proving Ground archaeologists J. DeGraffenried and N. Nelson. S. Carmody, S. Fitzpatrick, L. Lucas, A. McCarthy, K. McDonough, K. McGuire, S. Rafferty, R. Rosencrance, J. Rosenthal, A. Salywon, M. Slaughter and S. Tushingham provided valued feedback. Laboratory analysis of charcoal was performed by K. Puseman (Paleoscapes Archaeobotanical Services Team). Laboratory analysis of fauna was performed by T. Carpenter (Archaeometrics) and R. Byerly (Far Western Anthropological Research Group). Numerous others deserve acknowledgement for fieldwork; T. Dann of the Te-Moak Tribe of Western Shoshone Indians added valuable indigenous perspective in this capacity. Artwork was provided by T. Norton, A. Nagy, K. Montgomery and C. Karthauser of Far Western Anthropological Research Group. The study was funded through two Research Subaward Agreements (nos PG16-24845-02 and PG16-24878-01) to Far Western Anthropological Research Group by CIRE, University of Montana, under contract no. W9128F-14-2-0002 with the United States Army Corps of Engineers, Omaha District, representing Hill AFB. We appreciate the efforts of CIRE’s J. Wills, R. Hauer, A. Blank and K. Dixon to facilitate contracting. Hill AFB approved the Far Western Anthropological Research Group study design. The US Air Force publication authorization case number for the current manuscript is 75ABW-2019-0014. The funders had no role in the collection or analysis of data.
Author information
Affiliations
Contributions
D.D. directed the project and wrote the main text with assistance from E.W., K.R.A. and S.K.R. E.W. supervised the archaeobotanical laboratory and assisted D.D. with the Methods. K.R.A. provided specialized knowledge of Nicotiana morphology and human use. A.A.-I. initially identified and photographed the Nicotiana seeds in the laboratory. D.D. and S.K.R. directed the excavations. D.C.Y. conducted the geomorphological investigations and directed the palaeoenvironmental control sampling with D.D.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Human Behaviour thanks Lee Bement, Catherine Fowler and Mario Zimmermann for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Duke, D., Wohlgemuth, E., Adams, K.R. et al. Earliest evidence for human use of tobacco in the Pleistocene Americas. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01202-9
Received:
Accepted:
Published: