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Background
Understanding covariances between the land surface and atmospheric states.

Strongly vs. Weakly coupled land-atmosphere data assimilation in short-range weather
forecasting

Developing strongly coupled land-atmosphere data assimilation with GSI-based EnKF

Recent development in strongly coupled land-atmosphere data assimilation with UFS (with
Noah-MP) and JEDI

Concluding remarks



Land-atmosphere Interactions in Numerical Weather and Climate Prediction

Coupled land-atmosphere model
Land surface parameterization

 Poor representation of land surface processes
can contribute to prediction biases in weather
and climate models

[Viterbo and Beljaars, 1995; Beljaars et al., 1996;
Xue et al., 1996, 2010; Lawrence et al., 2007].

* Biases in land-atmosphere coupling in climate
models can contribute to climate prediction biases
(Williams et al. 2016)

* Soil moisture can influence climate prediction
and weather forecasting
le.g., Shukla and Mintz, 1982; Koster et al., 2006,

2010] [Chen and Dudhia 2001; Ek et al. 2004;
Santanello et al. 2018]
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Improved observations, model parameterization,
and data assimilation are the typical ways to
mitigate the biases and uncertainties




Land-Atmosphere Coupling is Essential in Near-Surface and Boundary Layer

Near-Surface atmosphere and boundary layer are strongly influenced by
land-atmosphere interaction. However,

Uncertainties in land-atmosphere coupling cause significant errors in weather and
climate predictions
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Near-surface weather forecast errors are significant in

numerical weather prediction! |
Sep-Oct 2012: Mean bias of 2-m Temp.

Dugway Proving Ground, Utah
Mean bias and RMSE for 2-m temperature and 10-m winds Mean Bias of Temperature — Initial time: 00-06-12-187

GFS.- U.S. Mountainous vs. U.S. Plains
00UTC FCST, June 2016
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Does Soil Moisture Have an Influence on Near-Surface Temperature?

16 soil mo - osical . 5 (Liu and Pu 2019, JGR)
>0! Tool:itgi;eé Star:;s;io(;%%géfgojgtlons’ Correlation between soil moisture and T2 (R<0.6)
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* There is an interaction between topsoil layer and
atmosphere; Impacts of soil moisture on near-surface
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Correlations between soil and atmospheric states (Liu and Pu 2019, JGR)
-- A single column model study with the Weather Research and Forecasting (WRF) model

o WREF single column model coupled with Noah Land Surface model
o RRTM longwave radiation/ Dudhia shortwave radiation/ YSU PBL / WSM-6 microphysics

Spring Summer Autumn Winter
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Understanding covariances between soil and atmospheric states in a

strongly coupled land-atmosphere data assimilation

Data Assimilation = The error correlations between
optimal solution of top-layer soil moisture (SM)
(model simulations + Observations) and bottom-layer atmospheric
weighted by error statistical T, Q, U, and Vin July 2016.

Variational Approach: B =T =XCX
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The domain mean error correlation
between the top 10-cm soil moisture
and atmospheric states at vertical
levels in July from 2015 to 2017.

Notable correlations between soil moisture in near-surface and boundary layer temperature and humidity
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The influence of SMAP soil moisture data assimilation (DA) on short-range weather
forecasting with WRF-Noah: Strongly vs. Weakly Coupled DA

no data assimilation
update only
top-layer soil moisture using bias-corrected
SMAP soil moisture (SM)

update SM and
T/Q using bias-corrected SMAP SM

Bias Correction

The soil moisture from Noah
and SMAP SM before and
after rescaling in July 2016
over the regions of interest
=~ SMAP /o BG (mean = 0.134 m m) Cumulative distribution

= SMAP w/ BC (mean = 0.215 m®> m™®)

NES N0 E function (CDF) matching
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(Lin and Pu 2019, MWR) SR

The sample of both descending
and ascending data from SMAP,
1-27 July 2016




SCDA vs. WCDA
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Strongly coupled land-atmosphere data assimilation within the GSI-EnKF
- Simultaneously assimilate (correct) soil moisture and atmospheric observations (states)

No. Experiment Control States Assimilated Observations )
OPNL ] ] US SPG Region
VarwoSM_CONV T,Q,U,V, MU Conventional data
VarwoSM_CONV_T2 T,QU,V, MU Conventional data + T2
VarwoSM_CONV_Q2 T,Q, U, V, MU Conventional data + Q2 * 1-28 July 2018 (Exp. Period)

VarwoSM_CONV_T2Q2 T,Q UV, MU Conventional data + T2 + Q2
VarwSM_CONV T,Q,U,V,MU,SM  Conventional data e Simultaneously assimilate soil moisture and

VarwSM_CONV_T2 T,Q,U,V,MU,SM  Conventional data + T2 atmospheric data

VarwSM_CONV_Q2 T,Q U,V, MU, SM Conventional data + Q2

VarwSM_CONV_T2Q2 T,Q,U,V,MU,SM  Conventional data + T2 + Q2 * Significant improvement on the prediction of
VarwSM_CONV_SM T,Q,U,V, MU, SM Conventional data + SM short-range weather prediction (nea r-surface
VarwSM_CONV_T2Q2SM T,Q, U, V, MU, SM Conventional data + T2 + Q2 + SM atmospheric COﬂditiOﬂS) and SOil moisture.
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(Lin and Pu 2020, MWR) 11



Verification of Soil I\IASOI\i/ISItlure Analysis Against verification of T2 and Q2 Against METAR Stations

Surface Soil Moisture Root-Zone Soil Moisture OPNL Bias = 1.0 OPNL RMSE = 2.3 (b)

VarwoSM_CONV
VarwSM_CONV
VarwoSM_CONV_T2
VarwSM_CONV_T2

T2  VarwoSM_CONV_Q2
VarwSM_CONV_Q2
VarwoSM_CONV_T2Q2
VarwSM_CONV_T2Q2
VarwSM_CONV_SM
VarwSM_CONV_T2Q2SM

(a) (b)

OPNL
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VarwSM_CONV_T2Q2SM
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Abs. Bias Reduction [K] RMSE Reduction [K]
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VarwoSM_CONV
VarwoSM_CONV_T2
VarwoSM_CONV_Q2
VarwoSM_CONV_T2Q2

OPNL Bias = -0.7 (C) OPNL RMSE = 2.0 (d)
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0.00
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RMSE [m3 m~3]

(e)
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RMSE [m3 m~—3]

(f)
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0.0

ATM State
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0.2 0.4 0.6 : 0.1 0.2 0.3

Abs. Bias Reduction [g kg-1] RMSE Reduction [g kg-11]

VarwSM_CONV_SM
VarwSM_CONV_T2Q2SM

Assimilation of soil moisture enhances accuracies
of analysis and forecasts of near-surface weather
variables

Assimilation of Soil Moisture and Q2 improves
the surface soil moisture analysis
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A recent development with UFS and JEDI

UFS ensemble spread of top layer soil moisture

NOAA Unified Forecast
System (UFS)

Joint Effort for Data
Assimilation Integration
(JEDI)

e LETKF data assimilation
method

With stochastic perturbations for With stochastic perturbations for
both initial condition and parameter Initial condition only
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Correlation between soil moisture and temperature in UFS

Correlation Coefficient between Soil Moisture (surface) and Temperature
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Correlation between soil moisture and humidity in UFS

Correlation Coefficient between Soil Moisture (surface) and Specific Humidity

2020006101 Mon 122 | _ Correlations between soil moisture
\ | and humidity at the lowest
model level of atmosphere
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Soil Moisture Bias Correction - CDF Match

---- SMAP L2
GDAS F06

UFS FO6
—: UFSF12
—— UFS F24

Soil moisture (m? m-3)

0.2 0.4

June 2020

—— UFS FO06 Statistic
Original SMAP L2
—— CDF-Matched SMAP L2

Soil moisture (m3 m-3)

0.4
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Soli moisture DA influence on UFS forecasts: Verify against METAR

Surface Dew Point (2020/06/04 00Z - 06/06 12Z) Surface Temperature (2020/06/04 00Z - 06/06 12Z7)

2020/06/04 Thu 00Z Average (last 6 forecasts)
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4.0 1
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1.5 T T T T T
1.5 T T T T T 0 20 40 60 80 100 120
0 20 60 . . 100 120 .
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STC experl ments Slghtly Improve the Surface RMSE: Init+Atm, GEFS MAB: Init+Atm, GEFS
—— RMSE: Init+Atm, GEFS, STC - MAB: Init+Atm, GEFS, STC
tem peratu re fo recaSt' —— RMSE: Init+Atm+VGF, GEFS, STC ----- MAB: Init+Atm+VGF, GEFS, STC
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Soli Moisture DA Influence on UFS forecasts: Verify against Soundings
850 hPa Specific Humidity (2020/06/04 00Z - 06/06 12Z) 850 hPa Temperature (2020/06/04 00Z - 06/06 12Z)

2.50 3.5

2.251
EXY

0.5 A
0.75 1

0.50 T T T T T 0.0 T T T T T
80 100 120 0 20 40 60 80 100 120

’ * * Forecast lg)ad time Forecast lead time
—— RMSE: Control - MAB: Control
No significant improvement or deterioration RMSE: It oAt GEFS MAB: i, GRS
compared with the control. L RMSE: I+ AmAVGE, GEFS, STC — MAB: Int At +VGF, GEFS, STC
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Concluding remarks

There are correlations between soil and atmospheric states. A strongly coupled
land-atmospheric data assimilation is recommended. The strongly coupled land-atmosphere
data assimilation outperforms the weakly coupled data assimilation.

A strongly coupled system with GSI EnKF demonstrates potential benefits in predicting
near-surface atmospheric conditions and soil moisture.

Recent development in strongly-coupled land-atmosphere data assimilation with UFS/JEDI is
In progress.

Evaluations of influences of strongly coupled land-atmosphere data assimilation on
medium-range weather prediction and 3-4 weeks/S2S are ongoing or under the plan.
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