ACLs don’t

Tyler Close
Hewlett-Packard Labs

Palo Alto, CA
Email: tyler.close@hp.com

Abstract

The ACL model is unable to make correct access
decisions for interactions involving more than two
principals, since required information is not retained
across message sends. Though this deficiency has long
been documented in the published literature, it is
not widely understood. This logic error in the ACL
model is exploited by both the clickjacking and Cross-
Site Request Forgery attacks that affect many Web
applications.

1. Introduction

In the last few years, increasing attention has been
devoted to attacks which are distinctly different in
nature from the major vulnerabilities discussed in the
past. Previously, buffer overflow, SQL injection and
Cross-Site Scripting (XSS) garnered the most attention.
These attacks all share a common modus operandi in
that they inject code into a victim program and thus
make it behave according to the attacker’s wishes. For
example, in a buffer overflow attack, data provided
by the attacker is written to a buffer of dimensions
declared by the victim. The attacker provides more data
than fits in the buffer, causing data to be written into
another region of memory, changing the logic of the
victim program. In an SQL injection attack, a literal
value provided by the attacker is included verbatim in
an SQL expression constructed by the victim program.
The literal value contains text that matches the SQL
syntax for closing a literal expression, followed by
more SQL expressions. When the constructed SQL
query is executed, the attacker gains unexpected access
to the victim’s database. Similarly, an XSS attack
involves attacker input that breaks out of the intended
quoting context in HTML, CSS, JavaScript or URL
syntax.

Recent attacks such as Cross-Site Request Forgery
(CSRF) and clickjacking don’t fit this familiar mold.

Neither attack requires injecting code chosen by the
attacker into the victim program. Instead, both attacks
use the victim’s existing program logic to unexpected
ends. Using messages that follow the syntactic con-
ventions expected for legitimate requests, the attacker
makes use of resources that should be inaccessible ac-
cording to the application’s access policy. For example,
in a CSRF attack, an attacker may successfully send
a buy request to a victim’s stock trading application,
though no one but the account’s owner is supposed
to be allowed to do that. In a clickjacking attack,
an attacker may start a web-cam recording, though
no one but the computer’s user is supposed to be
allowed to do that. Though these victim applications
may correctly implement traditional access control lists
(ACLs), somehow the attacker still gains access to
resources that are supposed to be inaccessible, and
does so without modifying any of the application’s
program logic.

Stranger still, the popular counter-measures for these
attacks do not involve fixing incorrect ACL config-
urations, nor adding ACLs to unprotected parts of
the application. Though these attacks circumvent the
application’s access policy, ACLs seem to play no
part in fixing the problems. Why do ACLs seem to
be so ineffective at fulfilling their basic purpose of
controlling access?

This paper provides an explanation of the com-
mon modus operandi of the new wave of attacks
that includes CSRF and clickjacking. This explanation
clarifies how these attacks exploit flaws in the ACL
model. These flaws render the ACL model ineffective
for access control in scenarios involving more than two
principals, such as are common on the Web.

The first part of this paper starts with the fundamen-
tals of the access matrix, explaining how it operates
in multi-party scenarios. This explanation points out
exactly where the logic errors occur in the ACL model
and what their effects are. Enhancements of the ACL
model and alternate models are discussed in terms of

how they may address these logic errors. The middle
part of this paper then explains how these errors in the
ACL model are manifested in contemporary systems,
like the Web. Finally, the paper closes with a discussion
of related works that have discussed these problems.

2. Access Matrix

The 1971 paper “Protection” [9], introduced the
access matrix as a way to model the permissions in
a software system and how they may be shared and
exercised. An access matrix is a table where each row
is labeled with the identifier for a principal, who may
send messages, and each column is labeled with the
identifier for a protected object, which may be a subject
of messages. A principal is considered to be a kind
of protected object and so may appear as both a row
and column. Each cell in an access matrix contains
entries identifying the operations the corresponding
principal is permitted to perform on the corresponding
object. For example, Table 1 is an access matrix of
two principals and three objects. The Vendor principal
has read/write permission to the log.txt file. The User
has read/write permission to two files: main.c and
a.out. Entry Ag ., refers to the permission p in row
R, column ¢ of access matrix A. For example, entry
Ay,a,write refers to the User’s write permission to the
a.out file.

The Protection paper describes two implementation
techniques for storing the access matrix: the capability
and the access control list (ACL). Performance trade-
offs are the only considerations presented for choosing
between these techniques.

This section examines the ACL and the capabil-
ity for semantic differences. The behavior of each
implementation is detailed for an identical scenario
involving three principals, one of which is a software
agent instantiated to mediate an interaction between the
other two principals. The software agent is a Compiler
which compiles source code provided by the User,
and maintains usage statistics for the Vendor. The
introduction of the Protection paper proposes this exact
scenario as a useful way to evaluate an access control
mechanism. As will be discussed, the scenario was
again taken up in a later paper on access control. !

1. For some readers, the particulars of this scenario may seem a
little dated. In that case, wherever the text talks of the Vendor, think
Web site; for Compiler, think Web browser; and for User, think Web
page. This correspondence is explained in greater depth in the next
section of this paper. After reading some of this section, you may
wish to skip ahead to the subsequent section and then come back.

Table 1. Access matrix for file access

main.c (m) a.out (a) log.txt (1)

Vendor (V)
User (U)

read, write

read, write | read, write

2.1. ACL checking

In the ACL model, a message consists of an iden-
tification of the sending process followed by an ar-
bitrary amount of data. The identification is provided
by the system and therefore cannot be forged. Upon
receipt of a message, a reference monitor uses the
sender identification and the message data to check that
corresponding entries in the access matrix specify the
required permissions. For example, starting from the
access matrix in Table 1, a User compiles a source
code file, outputting the results to a local output file.

The interaction begins with the User executing a
Vendor provided compiler program. This execution
adds a new row and column to the access matrix for
the running Compiler instance. 2 At this point, the User
has ‘call” permission on the Compiler and the Compiler
has ‘write’ permission on the log.txt file. To set up
the compilation, the User grants the Compiler at least
‘read’ permission to main.c and ‘write’ permission to
a.out, resulting in the access matrix in Table 2.

To initiate compilation, the User sends a compile
message to the Compiler, specifying the names of the
input source code file and the output object code file.

User:

Compiler.compile ("main.c",
"a.out")

Upon receipt of the compile message, the Com-
piler’s reference monitor uses the message sender
identifier to check that the message sender has ‘call’
permission on the Compiler. This check searches down
column A, of the access matrix, finding entry Ay c cqli
and so the access check passes and computation
proceeds. The Compiler then reads the input source
code by sending a read message to the Filesystem,
specifying the name of the file to read.

Compiler:

Filesystem.read("main.c")

Upon receipt of the read message, the Filesystem’s
reference monitor checks that the message sender has

2. Today’s mainstream operating systems typically do not use a
separate principal for a running process, instead running the process
as the User. To create a multi-party scenario, the current example
assumes this violation of least privilege is not made. This assumption
was also made in the original presentation in the Protection paper.

Table 2. Access matrix for an instance of the compiler program

Compiler (¢) | main.c (m) a.out (a) log.txt (1)
Vendor (V) read, write
User (U) call read, write | read, write
Compiler (C) read write write
‘read’ permission on the specified file. This check finds User:

entry Ac m,reqq Of the access matrix, and so the check
passes and the file contents are returned.

To maintain usage information, the Compiler then
sends an append message to the Filesystem, specifying
the name of the Vendor’s log file.

Compiler:

Filesystem.append("log.txt",
"log entry")

Entry Ac i write is checked before writing the log
entry.

Finally, the Compiler sends a write message to
output the object code.

Compiler:

Filesystem.write("a.out",
"compiled code")

Entry Ac o write authorizes this output.

2.2. Capability transfer

In the capability model, a message consists of a
list of permissions and an arbitrary amount of data.
Each permission in the list is selected by the message
sender, choosing from its held permissions. The se-
lected permissions are added to the message by the
system and therefore cannot be forged. A message
recipient can in turn send messages using any of the
permissions provided by the message, or already held
by the recipient. Once again using the same example,
and starting from the access matrix in Table 1, a User
compiles a source code file, outputting the results to a
local output file.

Again, the interaction begins with the User ex-
ecuting a Vendor provided compiler program. This
execution adds a new row and column to the access
matrix for the running Compiler instance. At this point,
the User has ‘call’ permission on the Compiler and the
Compiler has ‘write’ permission on the log.txt file.

To initiate compilation, the User sends a compile
message to the Compiler, specifying permission to the
input source code file and permission to the output ob-
ject code file. The User’s reference monitor constructs
this message, copying the specified permissions from
row Ay of the access matrix.

AU,c,call .compile (AU,m,'r'eadr AU,u,w'r'ite)

Upon receipt of the compile message by the Com-
piler, the access matrix can be construed as again being
in the state depicted in Table 2, though it’s more
accurate to think of the Compiler as directly wielding
the permissions received from the User, rather than
having its own independent permissions. For example,
using the permission received in the compile message,
the Compiler’s message to read the input source code
takes the form:

Compiler:

AU,m,read .read()

To maintain usage information, the Compiler sends
an append message using the permission provided by
the Vendor.

Compiler:

Ay write -append ("log entry")

Like with the ‘read’ permission provided by the
compile message, the Compiler holds a copy of the
‘write’ permission the Vendor provided when con-
structing the Compiler.

Finally, the Compiler sends a write message to
output the object code.

Compiler:

Av,a,write -write ("compiled code")

2.3. Confused Deputy attack

For the worked example, both ACL checking and
capability transfer yield the same access decisions,
permitting each step in the example to proceed; how-
ever, the two differ in the process used to reach
these decisions. Consider the final access decision,
which authorizes the output of the compiled code. In
capability transfer, the reference monitor determined
the exercised permission, Ay, q write, by performing a
look-up against row Ay at the time the compile mes-
sage was sent. In ACL checking, the reference monitor
determined the exercised permission, Ac g writes bY
performing a look-up against column A,, at the time
the write message was sent. Exercising Ay q write
or Ac qwrite has the same effect, so this distinction
makes no difference, in this case. In a similar case, an
attacker could use this distinction to cause a significant
difference.

For ACL checking, consider the case where the User
is an attacker and so where before the User sent the
compile message:

User:

Compiler.compile ("main.c",
"a.out")

, instead the User now sends the compile message:
User:

Compiler.compile ("main.c",
"log.txt")

The text string "log.txt", sent by the User,
becomes the value of the identifier provided by the
Compiler in its message to output the compiled code:

Compiler:

Filesystem.write("log.txt",
"compiled code")

This time, the reference monitor performs a look-up
against column A; of the access matrix and so entry
Ac 1, write authorizes the message. Consequently, the
Vendor’s usage log is overwritten with compiled code.

In capability transfer, the User’s attempt to construct
a compile message specifying write permission to
log.txt is rejected by the reference monitor, since the
look-up against row Ay of the access matrix shows
the User does not possess this permission.

In the original presentation of this attack [8], the
Compiler is termed a Confused Deputy. The Compiler
has been deputized by the Vendor to operate on his
behalf, but also operates on behalf of the User. Though
it has the responsibility of mediating between distinct
parties, the Compiler does not have a mechanism for
keeping separate the authority received from these
different sources. The implicit expectation for the write
message is that permission received from the User will
be exercised, but the Compiler has no way to express
this expectation and so permission received from the
Vendor is exercised instead. The Vendor contributed
write permission is confused for one contributed by
the User; hence, the Confused Deputy. >

2.4. ACLs don’t authorize correctly

The intent for the compile method is to output the
compiled code to one of the User’s files. In capability
transfer, the access check is performed as soon as the

3. The shorthand for this attack, ‘Confused Deputy’, is a little
unfortunate since it implies some lack of competence on the part
of the deputy software agent. As is clarified in this section, the
confusion of one permission with another is a condition created by
the ACL model and which the deputy may be unable to rectify.

User selects an output file and is carried through the
rest of the computation in the form of a capability.
In ACL checking, only a data string is produced by
the User’s selection of a file and the access check is
delayed until the output file is about to be written. At
this late stage, the ACL reference monitor does not
know that the value of the file identifier is chosen by
the User, not the Compiler, so the access check yields
an incorrect decision.

The paper “Authentication in Distributed Systems:
Theory and Practice” by Lampson et al (Speaks-for)
[10] begins with a summary of the access matrix model
presented in Protection [9]. This summary defines the
inputs to the ACL reference monitor:

The reference monitor bases its decision on
the principal making the request, the opera-
tion in the request, and an access rule that
controls which principals may perform that
operation on the object.

Given these inputs, the ACL reference monitor is
unable to produce correct access decisions for sce-
narios involving more than two principals, since the
particulars of the operation may have been determined
by a principal other than the request sender or the
request receiver, and this information is not available
to the reference monitor.

In contrast to the ACL reference monitor, the capa-
bility reference monitor performs access checks earlier
in the call chain of messages, when the principal
designating a particular object is still known. The
result of an access check is reified as a capability that
can be transferred to other principals, and so used in
messages that combine the permission with those of
the other principals. A message at the end of such
a call chain may exercise permissions contributed by
many principals, each one authorizing some specific,
smaller part of the requested operation. In a capability
language, this construction of messages from capabili-
ties is expressed using the language’s normal argument
passing syntax.

When viewed in this way, it is clear that the ACL
model and the capability model are fundamentally dif-
ferent ways of modeling the authorization of requests.
Although both models can be construed as algorithms
operating on an access matrix, they use different parts
of the matrix at different times and grow the matrix in
different ways, resulting in different access decisions
for identical scenarios. Therefore, the view presented
in the Protection paper that ACLs and capabilities are
merely different implementation choices for a single
access model embodied by the access matrix is in-
correct. Moreover, for a given access policy, access

decisions are not results that can benignly differ: one
is right, the other wrong.

2.4.1. Role-based access control, etc. The Speaks-for
paper [10] begins with the statement:

Most computer security uses the access con-
trol model [9], which provides a basis for
secrecy and integrity security policies.

As is shown in this paper, the provided basis is
inadequate for multi-party scenarios. Unfortunately,
the first clause in the quote is accurate; the ACL
model, sometimes called Identity-based Access Con-
trol IBAC), is pervasive in computer security. Varia-
tions on this model, such as Role-based Access Con-
trol (RBAC) [5] and Attribute-based Access Control
(ABAC) [1], which seek to address the burdens of
client identification, are still vulnerable to the Con-
fused Deputy attack discussed in this paper. These
variations on the IBAC model also suffer from the
same problem of delaying the access control check
until a late stage, when information needed to make
a correct access decision is no longer available. Just
as with IBAC, RBAC and ABAC fail to account for
effects on the requested operation by principals other
than the immediate message sender.

2.4.2. setuid. In the compilation scenario, the ACL
reference monitor uses the Compiler’s identity when
performing the access check for the write message
that outputs the compiled code. The Confused Deputy
attack exploits the fact that the Compiler has additional
permissions, such as write access to the log.txt file,
beyond what the User possesses. It is tempting to
believe these attacks can be addressed by switching
the principal identifier for a running program, such as
can be done with the setuid() command in Unix.

In the compilation scenario, none of the existing
principals is an appropriate one for execution of the
output message. As has been shown, running as the
Compiler results in a Confused Deputy attack. The
Vendor does not have write permission to the User’s
output file. The compiler should not be allowed to run
as the User, since the User may have access to files
that should be protected from the Compiler. The need
for this constraint is more obvious in an environment
where the program’s source code is not available to be
inspected by the User. For example, this is the case in
a distributed computing scenario, where the Compiler
might be a service running on a remote server.

Essentially, none of the divisions of permission
embodied by the principals correctly isolates the per-
mission needed for the write message.

It is also noteworthy that this technique depends
upon the rigorous participation of the application pro-
grammer to make the uid setting system calls. Conse-
quently, the correct implementation of an access policy
cannot be ascertained by an examination of the ACLs
configured for an application, but must also include
an examination of the program’s source code. To date,
this technique has been error prone [2].

2.4.3. Stack introspection. Since principal identities
are too coarse grained to segment authority received
from separate sources, perhaps an intersection of
identities could provide the needed specificity. Stack
introspection, as implemented in the Java platform
[6], bases access decisions on the intersection of the
permissions held by a list of principals. By default,
this list of principals includes each caller in the call
chain leading up to an access check. The access is
only allowed if every principal in the list possesses
the required permission.

If the value of the object identifier used in an access
check was determined solely by principals represented
in the call chain, this technique defends against a
Confused Deputy attack. Since each principal has
permission to perform the operation on its own, none
of the principals can increase their authority by having
another principal execute the operation on their behalf.
On the other hand, if a principal not represented in
the call chain could have an effect on the value of
the object identifier, the Confused Deputy vulnerability
remains. For example, if any of the callers computed
the identifier value based on the value of state held
in their lexical scope, such as by reading an object
member field, there may be principals who could affect
the value of the identifier without being in the call
chain. These principals were in the call chain when
the member field was assigned, but aren’t when the
field is later read.

To address this problem, the Java API provides a
means to manually track principals across call chains.
At the time a member field is assigned, the caller can
take a snapshot of the list of principals in the current
call chain . Later, a caller can switch from the default
call chain based principal list to the saved snapshot list.
By switching lists, principals who were represented in
the current call chain, but not in the saved list, are no
longer considered in any access check. Consequently,
effects these principals may have had on the object
identifier used in an access check could again lead to
Confused Deputy vulnerability. It is unclear if the Java
API provides a way to merge the current call chain list

4. java.security.AccessController.getContext()

with a saved list, but presumably such functionality
could be provided. In either event, this model intro-
duces a need to maintain a corresponding principal list
for every member field, and to keep this list consistent
with the sequence of assignments done to the member
field. If ever a principal has an effect on the value
of a member field, without being represented in the
corresponding principal list, there is an opportunity for
a Confused Deputy attack.

There are also additional opportunities for Confused
Deputy in a stack introspection design. The purpose
of a software agent like the Compiler is to mediate
an interaction between two or more other principals.
Often this mediation involves using the union of their
permissions. For example, consider an operation of
two parameters. The software agent is to use an object
specified by principal A as the first argument and an
object specified by principal B as the second argument.
Principal A should be prohibited from using principal
B’s object as the first argument, and vice-versa. In
this case, no single principal list can fully express
these access constraints, so access checks done by the
operation’s implementation are necessarily vulnerable
to Confused Deputy attack.

By providing an indivisible representation of an
access matrix entry, a capability essentially enforces
the discussed tracking of the authorizing principal for
every object identifier held by a caller. Since the repre-
sentation is indivisible, any principal who had an effect
on the object identifier must also have held the corre-
sponding permission. Under stack introspection, this
tracking of principals is manually implemented at the
discretion of the application programmer. Since many
capabilities can be provided as arguments to an oper-
ation, independently tracked authorization chains can
correctly authorize multi-argument operations. Such
access decisions cannot be correctly done using stack
introspection, since at best the model supports tracking
of a single authorization chain per operation.

2.5. ACLs don’t authenticate reliably

One of the core features of an ACL message system
is the provision of an identifier on every message that
identifies the sender. The ability to know “Who said
this?” for any given message is generally thought to
be important and useful information, and so many
deployed systems provide this client authentication.
As has already been shown, client authentication is
actually misleading when used as the input to an access
decision. Other message recipient routines may also
rely on client authentication for purposes for which it
is unreliable.

In the compilation scenario, the User can provide
any object identifier as the second argument in the
compile message to the Compiler. The Compiler nec-
essarily uses this argument as the target for the write
message sent to output the compiled code. Since this
message target is determined by the User, the User
can cause the Compiler to send a write message to
any target object of the User’s choosing. Depending on
the particular implementation, the target object may be
limited to one of type file in this case; however, in other
implementations and in general, this type restriction
may not apply. Consequently, it should in general be
assumed that a first principal that can call a second
principal can cause that second principal to send a
message to any target object of the first principal’s
choosing. Therefore, a message recipient must not
assume that the mere sending of a message represents
an expression of intent by the message sender. The
targeting of a message may not be something that the
message sender exerts control over. Since no intent can
be associated with the sender identifier provided by a
message, the ways in which a message recipient can
rely on this client authentication are quite restricted.
These limitations of client authentication may not
be well understood by many system designers and
application developers.

For example, consider a recipient that presents the
contents of a received message as being authored by
the message sender, as an electronic bulletin board
might do. While it may be true that the bits in
the message passed through the sender’s computer,
these bits may not represent an expression by the
sender. In the case of the Compiler, the content of a
write message is largely determined by the User; so
attributing this content to the Compiler is incorrect.
The Compiler’s intent is merely to place output where
the User directed; not to claim authorship of any
expression in that content. This logic error is especially
dangerous in an environment where a software agent
doesn’t run as a distinct principal, but rather under
the identity of one of its human users, such as is
the case for all mainstream operating systems. In the
compilation scenario, neither the User nor the Vendor
can sensibly be identified as author of the compilation
output. As discussed, the Vendor has no intent to claim
authorship of the compilation output. The User lacks
control over messages sent by the Compiler, since the
Compiler’s code is provided by the Vendor.

In general, a security reviewer should approach any
use of client authentication in a software system with
suspicion. Little can be reliably concluded based on
client authentication.

2.6. ACLs don’t assign accountability cor-
rectly

In a Confused Deputy attack, the deputy’s per-
missions are exercised in a way the deputy did not
intend and may have been unable to prevent. For
example, in the compilation scenario, the User provides
the impetus for overwriting the log.txt file, not the
Compiler. Holding the Compiler accountable > for this
abuse is neither fair, nor useful. Redress of the situation
requires identification of the User, not the Compiler.

For a principal to be usefully held accountable for a
message, that principal must have had intent associated
with that message. The previous section showed the
client authentication attached to a message in an ACL
system does not provide a reliable indication of in-
tent. Consequently, this authentication is not a reliable
means of assigning accountability for messages. In an
attack scenario, accountability is incorrectly assigned
to a principal who was merely forwarding a message
as directed, and required to provide basic functionality.

Interestingly, ACLs also fail to assign accountability
correctly in legitimate cases. For example, in the non-
attack case of the compilation scenario, the Compiler
is held accountable for the write to the a.out file.
Again the Compiler is acting at the impetus of the
User; and this time is also using permission received
from the User. Holding the Compiler accountable for
this write operation makes little sense, but the ACL
model provides no alternative. The write message only
identifies the Compiler. The ACL reference monitor
does not know what messages instigated sending of
the write message. The access matrix does not record
the source of permissions held by the Compiler.

In the case of a software agent, like the Compiler, it
may be possible to maintain a separate log of what
delegation of permission was done, what messages
were sent and so through analysis of the software
agent’s source code, determine a more appropriate
principal to hold accountable for an operation. This
forensic task is more difficult when the acting principal
is a human user, rather than a software agent. For
example, consider a case where a co-author has been
granted write permission to a document file created
by a first author. The co-author then further delegates
this write permission to a student, telling the student
to submit a homework assignment to this location.
When the student dutifully submits the assignment,
the document file is overwritten with unrelated infor-
mation. In this scenario, the student is acting in good

5. The term ’accountability’ is used here in the same sense as it
is used in [15].

faith, like the Compiler in the compilation scenario,
and is merely forwarding output as directed. Though
the student actually performed the act of overwriting
the document file, the document’s first author should
rightly hold the co-author accountable for this act,
not the student. Under the ACL model, the write
message only identifies the student; and the access
matrix, even if augmented with additional logging,
doesn’t provide sufficient means to determine that the
co-author should be held accountable for this act. Such
a determination requires knowing what the co-author
said to the student.

In contrast to the ACL model, the capability model
doesn’t perform delegation by providing the delegate
with its own unique representation of a permission.
Instead, the delegate directly manipulates the same
capability held by the principal that performed the
delegation. For example, in the current scenario the
first author would create a capability to a file. This ca-
pability would then be passed to the co-author. The co-
author then passes the same capability to the student.
When the student exercises the capability, a simple
equality test shows it to be the same one created by
the first author. Accountability for the write operation
is therefore assigned to the first author. Again through
a simple equality test, the first author can determine
that the exercised capability is the one delegated to the
co-author and so in turn blame the co-author. The co-
author, having sent the capability to the student under
false pretenses, is ill-equipped to further pass the buck.
Regardless of whether or not the co-author in turn
blames someone else, the first author has collected
sufficient information to know that delegation to the
co-author ultimately resulted in unwanted operations
and so take action by revoking © the capability and not
granting the co-author write access in future.

The discussed scenario involves a chain of dele-
gations: from the first author to the co-author, and
then from the co-author to the student. In the ACL
model, accountability for a message is assigned to
the principal at the end of this delegation chain. In
the capability model, accountability is assigned to the
principal at the start of the delegation chain. Working
the delegation chain backwards to a point where re-
dress action can be taken is difficult and sometimes
impossible. Working down the delegation chain from
start to finish is a feasible way for an injured party to
determine an appropriate redress action.

In richer multi-party interactions, a principal may
over time be introduced to new principals. Some of

6. The revocation of this capability can be done using the Care-
taker pattern described in [12].

these introductions may come from distinct princi-
pals. Consequently, a principal has an evolving under-
standing of other principals and relationships between
them. The Horton capability protocol [13] provides
a comprehensive way to track delegations, and take
appropriate redress action, in such dynamic multi-party
scenarios.

2.7. Avoiding Confused Deputy within a capa-
bility application

Although the capability model itself is not vulnera-
ble to Confused Deputy attacks, an application built
for a capability system could make itself vulnera-
ble to a Confused Deputy attack by effectively re-
implementing an ACL design on top of capabilities.
For example, an application that keeps a mapping from
string names to capabilities and communicates with its
clients in terms of these string names is effectively
re-implementing the ACL model and so makes itself
vulnerable to Confused Deputy attacks.

The crucial step in a Confused Deputy attack occurs
when an object identifier passes through an intermedi-
ate principal without being checked against the access
matrix. For example, in the compilation scenario, a
file identifier passes through the Compiler on its way
from the User to the Filesystem. Once the file identifier
has passed from the User to the Compiler, information
needed to perform a correct access check has been
lost. This isolation of the critical error suggests that
Confused Deputy attacks can be discovered, and fixed,
through an analysis of the API for messages between
protection domains.

Wherever a message parameter is of a raw data type,
like a text string or integer, and its value identifies an
object for which access permission is required, there is
a possibility of a Confused Deputy attack. Determining
whether or not there is an attack requires examination
of the inputs to the routine that eventually performs the
dereference operation of looking up the corresponding
permission for a given identifier. In a capability system,
one of the inputs to this dereference routine must be
the list of all permissions that an identifier could map
to. If all principals who can determine the value of
the identifier should have the ability to exercise any
of the permissions in the list, there is no Confused
Deputy vulnerability. Otherwise, the application may
be vulnerable to a Confused Deputy attack, which can
be constructed by identifying a principal who can inject
the unexpected identifier but should not be able to
exercise the corresponding permission.

Sometimes, this attack may be thwarted by an in-
termediary that performs ad-hoc tests against the value

of an identifier before passing it along. For example,
this operation is commonly performed by some HTTP
firewalls that reject HTTP requests having a Request-
URI with a disallowed value. This operation has the
effect of making it seem like the list of permissions
used by the HTTP server’s dereference routine is
shorter than it actually is. In cases where a Confused
Deputy attack can be defended against in this way,
it is more robust to instead actually shorten the list
of permissions used by the deference routine. For
example, the HTTP server may be configured to only
have read access to those files that all Web users should
have read access to. In this case, ad-hoc checking of
the Request-URI is unnecessary.

In other cases, it may be that permissions in the
list should not be uniformly accessible to all clients.
For example, in the compilation scenario each user has
access to a different set of files. In such cases, it is best
to modify the API to use the corresponding capability
wherever the object identifier is used, such as was
shown for the capability version of the compilation
scenario. More concretely, and assuming a Unix-like
system, the compiler API should be modified to use
file descriptors, instead of filenames. Before calling the
Compiler, the User opens an output file and includes
the file descriptor in the compile message, in place of
the output filename. The input filename and log file-
name should similarly be replaced with corresponding
file descriptors.

3. Contemporary examples

Since Confused Deputy is an attack on the ACL
model itself, we should expect to find instances of
this attack in any system using the ACL model for
interactions involving more than two principals. Sys-
tems using the ACL model are widespread, making
the restriction to multi-party interactions the more
limiting factor. Distributed computing systems that
support interaction between multiple principals have
been slow to deployment, but the Web finally brought
this functionality into the mainstream. Unfortunately,
the Web has, to date, mostly done so using the ACL
model and so exhibits the expected Confused Deputy
vulnerabilities.

The previous section describes a scenario in which
an HTTP server is a Confused Deputy, operating with
filesystem permissions from a Web site operator, but
acting on requests from Web surfers. The Web browser
also provides many opportunities for Confused Deputy
attacks, as it is deputized with HTTP cookies by one
Web site, while rendering Web pages from other Web
sites.

3.1. Cross-Site Request Forgery

For example, consider an investment account at
a stock broker’s Web site 7. This Web applica-
tion provides a feature to buy stocks. The resource
to make a purchase is located at a URL like:
https://example.com/buy.php. A POST re-
quest sent to this resource provides the stock ticker
and number of shares to buy. In the planned legitimate
use-case, this resource is invoked from a FORM in an
HTML page served by the stock broker’s Web site.
In an attack scenario, another Web site could serve
an HTML page that contains an identical FORM, pre-
populated with a ticker symbol and number of shares.
Using JavaScript, this FORM can be automatically
submitted on page load. Assuming the user is cur-
rently logged into the stock broker’s Web site, the
user’s browser will send the POST request to the
stock purchase resource and include any cookies, or
HTTP authentication credentials, set up with the stock
broker’s Web site. The stock broker’s Web site receives
a POST request containing exactly the same Request-
URI, entity body and cookies as in the normal case.
The user may see nothing out of the ordinary in the
Web browser’s presentation.

The above attack is analogous to the previously
studied compilation scenario. Table 3 lists the cor-
responding elements in each attack. In the browser
based attack, the ACL reference monitor executes on
the stock broker’s Web server, using the HTTP cookie
and URL to look-up an entry in the application’s access
matrix.

When popularized, this attack was given the name
Cross-Site Request Forgery (CSRF) [16]. The use of
the term forgery is not ideal, since no signature or other
authenticity marker is altered or imitated. Instead the
problem is the Confused Deputy vulnerability inherent
in the ACL model.

To defend against this attack, the CSRF paper
recommends use of an unguessable token in the
HTML FORM served by the stock broker’s Web
site. The stock purchase resource then checks that a
received POST request contains the expected token.
The browser’s Same Origin Policy prevents an attack
page from extracting a token from a legitimate page.
This technique has become the most popular defense
to CSRF vulnerability.

Although the CSREF article makes no reference to the
Confused Deputy attack or capabilities, the suggested
defense is effectively to transition the application away
from the ACL model and to the capability model.

7. This example is adapted from the one presented in [16].

Comparing the suggested defense to the capability-
based solution for the compilation scenario, and again
assuming a Unix-like system: the URL is like the
filename; and the unguessable token is like a file
descriptor, approximating the unforgeability of a ca-
pability with unguessability. A legitimate page from
the stock broker’s Web site first opens the stock pur-
chase resource, receiving an unguessable secret. The
legitimate page then uses this unguessable secret when
instructing the browser to write to the stock purchase
resource.

3.2. Clickjacking

In the example of the previous section, the use of
an unguessable token transitions the POST request
that makes a stock purchase into the capability model;
however, the GET request to set up a purchase remains
in the ACL model. Recently, it has been shown how
this setup phase remains vulnerable to a Confused
Deputy attack.

For example, the investment account at a stock
broker’s Web site also includes a feature to sell
owned shares. In the portfolio summary page, beside
each holding, is a button labeled “close position”.
Clicking this button sells the held shares. The cor-
responding HTML FORM may or may not be pro-
tected against CSRF using the previously discussed
technique. The portfolio summary page is located at
a URL like: https://example.com/home.php.
An attacker’s page, served from another Web site,
can include an HTML IFRAME that references the
portfolio summary page. An IFRAME creates an inline
child window that displays a referenced page. Using
Cascading Style Sheets (CSS), the attacker’s page
can style the IFRAME to have no border and be
transparent. To the user, this IFRAME is completely
invisible. Underneath the IFRAME, the attacker’s page
puts content that entices the user to click at a specific
location. For example, this content could be a “punch
the monkey” type game, or just a link “click here for
free stuff”. The attacker has positioned this click target
so that it is directly underneath the “close position”
button in the invisible IFRAME. When the user clicks,
the click is delivered to the invisible button since it is
on top of the attacker’s content.

The particular rendering techniques highlighted by
the clickjacking research [7] are fascinating, but this
glitz may distract from the actual underlying problem.
Much simpler techniques could also be used in a
plausible clickjacking attack, and so perhaps make the
actual problem more apparent. For example, consider
a scenario where a single button press can launch a

Table 3. Corresponding elements in Confused Deputy attacks

element compilation scenario

stock purchase scenario (CSRF)

stock sale scenario (clickjacking)

Confused Deputy Compiler

Web browser

Web browser

message sender identifier process UID

HTTP cookie

HTTP cookie

victim Vendor stock broker application stock broker application
attacker User visited HTML page visited HTML page
unexpected object identifier "log.txt" https://example.com/buy.php | https://example.com/home.php
abused object log.txt file stock purchase resource account summary page
operation write POST GET

dangerous action. The attacker could engage the user
in a game of mouse clicking, and then, just as the
user was about to click, navigate the browser to the
page containing the privileged button. In this case,
there are no IFRAME:s or transparency settings, just a
simple page navigation. Even the use of JavaScript is
unnecessary as the navigation could be triggered by the
immediately preceding mouse click. Stripping down
the scenario to this extent shows that the attacker can
cause mischief using only the authority to link to a
private page.

An HTML link is a request for the browser to place
named content at a specified on-screen location. When
the browser includes cookies in the GET request to
fetch the content, it is acting as a Confused Deputy.
Like in the compilation scenario, the requestor does
not have permission to access the named resource, but
can provide the resource’s name to the deputy, who
will access the resource on the requestor’s behalf. In
clickjacking, the requestor is the creator of the HTML
link and the deputy is again the Web browser. A full
listing of the corresponding elements in the attacks is
shown in Table 3. This formulation of a Confused
Deputy attack is quite similar to the previously dis-
cussed CSREF attack. In that attack, the attacker causes
a POST request to a victim site, accompanied by the
victim site’s cookies. Clickjacking can similarly be
thought of as an attack in which the attacker causes
a GET request to a victim site, accompanied by the
victim site’s cookies. In a CSRF attack, the payoff to
the attacker comes from the side-effects of the POST
request. In a clickjacking attack, the payoff comes
from the on-screen positioning of private controls.
Gratification is slightly delayed in the clickjacking
attack, since it doesn’t come until the user clicks, but
the subterfuge comes before the final click, in the set
up of the click target.

A complete defense against both clickjacking and
CSRF can be created by completing the transition away
from the ACL model and to the capability model. If the
URL for a page containing privileged buttons included

an unguessable secret, the attacker would be unable
to create an IFRAME element that refers to the page.
Similarly, the attacker would also be unable to navigate
the browser to that page at an unexpected moment.
By taking away the attacker’s ability to display the
privileged buttons, we take away the opportunity to
play tricks with the timing and positioning of their
display.

In the capability model, the rendering tricks used in
the clickjacking attacks are not dangerous and so need
not be restricted. For example, there’s no need to place
restrictions on the creation of IFRAMEs or opacity
styling. If an attacker doesn’t know the unguessable
URL for a victim page, he is unable to load the page
and so is unable to trick the user into interacting with
the page. If a legitimate site does know the unguessable
URL for a page at a partner site, it can load the page
and customize its presentation. Such customization
isn’t trickery, since there’s no need for trickery. The
legitimate site can already send any request it likes
using the unguessable URL; interaction from the user
isn’t needed.

3.2.1. web-key. A surprising number of the problems
with today’s Web are directly attributable to the use
of the ACL model. The web-key paper [4] explains
many of these problems and also describes how best
to use unguessable URLs to address these problems
and move the Web to the capability model. No changes
to Web protocols, formats, user agents or server-side
infrastructure are required to make this transition. The
required changes are limited to the URL namespace
defined by a Web application.

3.3. Click fraud

Both the Cross-Site Request Forgery and clickjack-
ing attacks target the misuse of client authentication as
an input to an access decision. As discussed earlier in
section 2.5, other message recipient routines may also
rely on client authentication for purposes for which it
is unreliable.

A Web browser only sends two kinds of requests:
GET and POST. Any visited Web page can cause
the browser to send both GET and POST requests to
any URL known to the Web page. An arbitrary GET
request can be sent using the HTML IMG element. An
arbitrary POST request can be sent using the FORM
element, and using JavaScript to programmatically
submit the FORM on page load. The web browser
exerts no control over the target of a request. As
discussed previously, this is normal and necessary
behavior for a software agent in a messaging system.
Consequently, the server-side of a Web application
should not associate any user intent with any received
request, based on client authentication.

For example, in pay-per-click online advertising, an
advertiser pays a publisher each time an advertisement
is clicked. A click is registered as a GET request to
some URL. Various client identifiers attached to the
GET request are checked to ensure clicks are coming
from distinct clients. In click fraud, an attacker entices
users to visit an attack page. This page generates a
GET request to the advertisement URL, without any
interaction from the user. Consequently, the advertiser
pays for advertisements that were never seen.

Once again, it should be emphasized that little can
be reliably concluded based on client authentication.
Knowledge of the principal that sent a request is most
often misleading information.

4. Related Work

All of the attacks described in this paper are pre-
sented in prior works. The Confused Deputy attack
was originally presented by Norm Hardy in 1988 [8].
The term “Cross-Site Request Forgery” was coined in a
blog post by Chris Shiflett in 2004. In 2000, a page on
the Zope web site described a similar attack, naming
it a “Client Side Trojan” [19]. Neither of these works
made the connection to the Confused Deputy attack.
In an August 2000 mailing list posting [17], Kragen
Sitaker recognized the attack described by Zope as an
instance of a Confused Deputy attack and described a
variation of the attack using a web crawler instead of
a web browser. The term “clickjacking” was coined
for an OWASP Conference talk by Robert Hansen
and Jeremiah Grossman [7]. Some of the rendering
techniques used in the attack had been the subject of
previous bug reports at Mozilla [14]. Shortly thereafter,
clickjacking was recognized as a Confused Deputy
attack in a web page by Tyler Close [3].

The realization that these attacks are not an artifact
of any particular implementation but rather arise from
a defect in the ACL model itself was implicit in the

original Confused Deputy paper. This aspect of the
problem was further elaborated upon in a paper by
Miller et al in 2003 [11]. This discussion highlighted
the loss of context that occurs in the ACL model due
to the separate transmission of object identifiers and
access rights. This paper also presented a refutation
of the claimed equivalence of the ACL and capability
models. This refutation pointed out the need for a
global namespace for both principals and objects in
the ACL model, where only local namespaces are used
in the capability model. Though the paper separately
discusses the Confused Deputy problem, the refutation
of equivalence does not point out the differences in
access decisions made by the two models, or how
this semantic difference arises. In Dan Wallach’s thesis
[18], the Confused Deputy problem is briefly discussed
in connection with stack introspection. This discussion
does not include mention of the remaining Confused
Deputy vulnerabilities in a stack introspection design
discussed in this paper.

The core contribution of this paper is the description
of the Confused Deputy problem in the terminology
of the access matrix. This description clarifies how
the ACL and capability models produce contradictory
access decisions, thus providing a more exact char-
acterization of the Confused Deputy problem. This
precision enables a better description of the caused
problems and the possible remedies, as well as a better
understanding of how contemporary systems, like the
Web, suffer from the problem. Better understanding
of the inability of the ACL model to correctly control
access in multi-party scenarios may help prevent the
continued recurrence of these attacks.

5. Conclusion

In messaging scenarios involving more than two
principals, the ACL model fails to retain enough in-
formation to enable correct access decisions. These
errors in the model are manifested in all systems that
use the ACL model for access control in multi-party
scenarios. For example, these errors are the underlying
flaw exploited by both the CSRF and clickjacking
attacks on the Web. The capability model does not have
these logic errors and can effectively control access in
multi-party scenarios. Some systems, such as the Web,
can be converted from the ACL model to the capability
model without change to their infrastructure and with
relatively minor changes to applications.

Acknowledgment

Thanks to Norm Hardy, David-Sarah Hopwood,
Alan Karp, Chip Morningstar, Fred Spiessens and
Marc Stiegler for providing valuable feedback on early
drafts of this paper. Though the received feedback was
instrumental in clarifying the presented arguments, any
remaining confusion, or error, is the responsibility of
the author.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis and A. Keromytis.
The Role of Trust Management in Distributed Systems
Security. Chapter in Secure Internet Programming: Se-
curity Issues for Mobile and Distributed Objects, (Vitek
and Jensen, eds.) Springer-Verlag. 1999.

[2] Hao Chen, David Wagner and Drew Dean. Setuid De-
mystified. Proceedings of the 11th USENIX Security
Symposium. 2002.

[3] Tyler Close. clickjacking: The Confused Deputy rides
again! http://waterken.sourceforge.net/clickjacking/ . Oc-
tober 2008.

[4] Tyler Close. web-key: Mashing with Permission. IEEE
W2SP 2008: Web 2.0 Security and Privacy. May 2008.

[5] D. F. Ferraiolo and D. R. Kuhn. Role Based Access
Control. 15th National Computer Security Conference:
554-563. October 1992.

[6] Li Gong. Java 2 Platform Security Architecture.
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/
security-spec.doc.html . 2002.

[7]1 Robert Hansen and Jeremiah Grossman. Clickjacking.
http://ha.ckers.org/blog/20080915/clickjacking/
September 2008.

[8] Norm Hardy. The Confused Deputy (or why capabilities
might have been invented). ACM SIGOPS Operating
Systems Review, Volume 22, Issue 4, pages 36-38.
October 1988.

[9] Butler Lampson. Protection. Proc. 5th Princeton Conf.
on Information Sciences and Systems, p437, Princeton.
1971.

[10] Butler Lampson, Martin Abadi, Michael Burrows and
Edward Wobber. Authentication in distributed systems:
theory and practice. ACM Transactions on Computer
Systems (TOCS), Volume 10, Issue 4. November 1992.

[11] Mark S. Miller, Ka-Ping Yee, and Jonathan S. Shapiro.
Capability Myths Demolished. Technical Report Report
SRL2003-02, Systems Research Laboratory, Department
of Computer Science, Johns Hopkins University. Mar
2003.

[12] Mark S. Miller and Jonathan S. Shapiro. Paradigm
Regained: Abstraction Mechanisms for Access Control.
8th Asian Computing Science Conference (ASIANO3).
2003.

[13] Mark S. Miller, James E. Donnelley and Alan H. Karp.
Delegating Responsibility in Digital Systems: Horton’s
“Who Done It?”. 2nd USENIX Workshop on Hot Topic
in Security (HotSec’07). 2007.

[14] Jesse Ruderman. iframe content
background defaults to transparent.
https://bugzilla.mozilla.org/show_bug.cgi?id=154957,
mozilla.org. June 2002.

[15] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceedings
of the IEEE, 63(9):1278.1308, September 1975.

[16] Chris Shiflett. Security Corner: Cross-Site Request
Forgeries. http://shiflett.org/articles/cross-site-request-
forgeries. Dec 2004.

[17] Kragen Sitaker. thoughts on capability security
on the Web. http://lists.canonical.org/pipermail/kragen-
t01/2000-August/000619.html , Kragen thinking out
loud. August 2000.

[18] Dan S. Wallach. A New Approach to Mobile Code
Security. PhD Thesis, Princeton University. January 1999

[19] Zope. Client side trojan issue.
http://www.zope.org/Members/jim/ZopeSecurity/
ClientSideTrojan . 2000.

