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1. Background 
 
This goal of this project was to increase the use of ensembles in operations by (1) demonstrating 
multi-model ensemble performance for high impact weather during the cool season along the 
U.S. East coast, (2) calibrating ensemble gridded data, and (3) developing and training 
forecasters on new ensemble display tools to better understand ensemble predictions and the 
evolution of ensemble uncertainty. Partners for this project include several NWS offices and 
operational centers at National Centers for Environmental Prediction (the Weather Prediction 
Center, Environmental Prediction Center, Ocean Prediction Center, and Aviation Weather 
Center), and the Developmental Testbed Center. 
 
2. Scientific Objectives and Accomplishments 
 
i. Fuzzy clustering for U.S. East coast winter storms 

a) Introduction to the fuzzy clustering approach  
 

An efficient evaluation of ensemble models’ performance for high impact weather events over 
U.S. East Coast region is very important to improve weather forecasting in this heavily populated 
region. For this project we developed a new ensemble clustering tool to help forecasters 
condense ensemble information, and evaluate ensemble models’ performance by separating 
different scenarios and comparing them with an analysis. An operational goal is to apply this tool 
to ensemble forecasts, and improve the interpretation of multi-model output as well as provide 
guidance to potential model bias and outliers. The details of the approach are described in Zheng 
et al. (2017). 
 
To quantify the variability of ensemble forecasts and recognize different scenarios among 
different operational models, a fuzzy cluster analysis is applied to group ensemble members with 
similar forecast scenarios. At the verification time, an EOF analysis is employed over ensemble 
MSLP anomalies over concern region. In general, as we have showed with our previous 
ensemble sensitivity efforts (Zheng et al. 2013), the leading EOF patterns represent the main 
characteristics of an ensemble forecast at the verification time. Given the first and second 
principal components (PCs) for each member of an ensemble set, Fuzzy clustering analysis can 
be performed to separate the members into groups. The detailed process is as follows: 

a) To start the iterative cluster procedure, a predefined number of clusters or initial guess 
was randomly placed in the EOF PC1-PC2 phase space. Each ensemble member denoted 
by the pair of PCs is then assigned to the nearest group center. 

b) New centers are computed by minimizing an objective function that represents the 
distance from each point to each new cluster center. Each point is examined again 
relative to the updated cluster centers. If no points can be reassigned because they are 
closer to another center, the iterations stop.  

c) Each member is assigned a weight value that identifies their relative strength of 
membership to their cluster (Harr et al. 2008). For a point k, the weight associated with 
the ith cluster is defined as, 
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      such that di,k  is the distance between point k and the centroid of cluster i, and dj,k is the 

distance between point k and the other cluster centers j. The fuzziness coefficient q 
determines the level of cluster fuzziness. A large q results in smaller memberships wi,k   
and hence, fuzzier clusters. In the limit q=1, the memberships converge to 0 or 1, which 
implies a crisp partitioning. In the absence of experimentation or domain knowledge, q is 
commonly set to 2. A total of C clusters can be calculated using equation (1) and the 
above procedure. 

 
 

b) Case study using fuzzy clustering method 

This section provides a forecast example to illustrate how to interpret the Fuzzy clustering result. 
The ensemble data is the 6-day ensemble forecast initialized at 0000 UTC Dec 21 2010 from 
ECMWF 50 members, CMC 20 members and NCEP 20 members. Mean sea level pressure 
(MSLP) is used for performing EOF analysis. One thing worth noting is that the analysis data 
(NCEP 6-hourly data) is also included as an extra member. Hence, the total ensemble member 
number is 90+1=91 members. EOF analysis is performed based on MSLP anomalies among 
these 91 members. 
 
Figure 1 illustrates ensemble spread/mean of ensemble MSLP and the first two EOF patterns. 
For each EOF pattern, there is a set of corresponding principal components (PC) including 91 
members. Ensemble mean suggests a cyclone off shore of coastal region. EOF1 pattern has a 
dipole around the ensemble mean cyclone, suggesting an east-northeastward shift of this cyclone 
(negative EOF1 pattern will correspond to an opposite shift). EOF2 pattern shows a monopole 
around cyclone center, suggesting a deeper cyclone (negative EOF2 will suggest a weaker 
cyclone). Therefore, EOF1 and EOF2 represent cyclone location and intensity uncertainty among 
the 91 members.  
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Figure 1 a) (top) Ensemble mean MSLP (contours, unit:[hPa]) and spread (shading, unit: 
[hPa]); b) (middle) EOF 1 MSLP pattern, unit: [hPa]; c) (bottom) EOF 2 MSLP pattern, unit: 
[hPa]. VT: 0000 UTC 27 December2010; IT: 0000 UTC 21 December 2010. 
 
PC1 and PC2 corresponding to EOF1 and EOF2 pattern form the coordinate of the individual 
members on the phase space (Fig. 2). In this example, 90 ensemble members and 1 analysis are 
grouped into 4 clusters, which are represented by different markers. The cluster with analysis 
point is called group analysis or “Group ANA”. The remaining three clusters are named by 
Group 1-3. Different marker colors (green, red, and blue) represent members from different 
forecast models (NCEP, CMC and ECMWF). 
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Figure 2. The first and second principal components for the four-cluster solution based on 
principal components from 90 ensemble members (colors) and 1 analysis member (black dot) 
initialized on 0000 UTC 21 December 2010 and valid at 0000 UTC 27 December 2010. Markers 
(filled circle, filled square, filled circle with a vertical bar, and filled triangle) represent clusters 
anal, 1, 2, and 3; black multiplication signs define the group centers for each cluster. 

 
For this particular example, the analysis point is around (-0.7, 0), which belongs to negative PC1 
pattern, or more onshore solution cluster. There are 20 ECMWF (blue dot) members, and 3 CMC 
(red dot) in this analysis group. None of the NCEP members are in this group. Therefore, for this 
6-day forecast, 20/50 ECMWF and 3/20 CMC members predict a close-to-analysis scenario, 
while NCEP members miss this scenario. This helps the forecaster quickly assess the different 
ensemble scenarios. Looking at the NCEP members (green color for all marker), most of them 
tend to be over the right side (positive PC1) of the plot, suggesting most NCEP members forecast 
an offshore cyclone. 

With the separation of 4 clusters as well as the corresponding ensemble members, we generated 
spaghetti plots for each cluster by picking up one MSLP contour line (Figure 3, 1005 hPa 
isobar).  Among the four groups, analysis group (Group ana) mean is the one most close to 
analysis (top panel in Fig. 3). Most of the members (20) in this cluster are from ECMWF 
forecasts (thin blue contours), and the rest 3 members are from CMC (thin red contours). Group 
1 mean (orange dashed contour) shows a deeper and more northeastward cyclone when 
comparing with analysis, and 14 ECMWF members and 5 CMC members form this group. 
Group 2 mean shows a more eastward cyclone; 6 ECMWF members, 6 CMC members and 4 
NCEP members form this Group, hence all three models contribute to this group. Group 3 mean 
shows a deeper and more eastward-northeastward cyclone; 10 ECMWF members, 11 CMC 
members and 11 NCEP contribute to this group. 
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Figure 3. The spaghetti plot of 1005 hPa MSLP from ensemble members in group ANA, group 1, group 2 
and group3.  Dashed orange contour shows cluster mean contour; green, red and blue contours represent 
m`embers from NCEP, CMC and ECMWF. The black contours represent the analysis for 1005 hPa. The 
ensemble forecast is initialized on 0000 UTC 21 December 2010 and valid at 0000 UTC 27 December 
2010. 
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c) Applying fuzzy clustering analysis to assess model performance  

An EOF analysis is employed over ensemble MSLP anomalies over verification region at 
verification time (e.g., day 6) to characterize dominant forecast uncertainty patterns. Given the 
first two leading EOF principal components (PCs) for each member of an ensemble run, Fuzzy 
clustering analysis can be performed to separate the members into different groups (in this study, 
we use 5 groups). By doing this, similar forecast scenarios are often represented by the same 
groups.    
 
We are using two verification regions in our analysis (Fig. 4). Given a 6-day ensemble forecast 
run, EOF PCs will be first calculated. Based on PCs, 5 groups will be partitioned using Fuzzy 
clustering analysis. The 90 multi-model members plus the ensemble meanare used when 
performing Fuzzy clustering grouping. Mean of each group will show the average scenario 
among that group, while spaghetti plots can show more details in the group. The analysis field is 
projected on the first two leading EOF patterns to get a pair of projection coefficients. The group 
including ensemble mean point is Group Ensemble (Group EM). The group with the center 
closest to analysis point is assigned to be analysis group. These two groups are not necessarily 
the same group in one case. 

 
 

 
Figure 4. Two verification regions. Region 1 (left): North Central & Eastern U.S. Coordinates: 
95W-65W, 30N-50N; Region 2 (right) Mid-Atlantic Coast & Western Atlantic. Coordinates: 
79W-62W, 32N-45N 
 

The case we are using to illustrate fuzzy clustering procedure is the February 2013 nor’easter 
impacting Northeastern U.S. and parts of Canada, which brought heavy snow and hurricane-
force winds on 8-10 February 2013. The run we are using has initial time on 1200 UTC 3 
February 2013 and valid at 1200 UTC 9 February 2013. Figure 2 shows the scatter plots using 
EOF PC1 and PC2 as well as the partitions of 5 groups. PC1 and PC2 corresponding to EOF1 
and EOF2 pattern form the coordinate of the individual members on the phase space (See figure 
5). In this example, 90 ensemble members and the ensemble mean are grouped into 5 clusters, 
which are represented by different markers. The cluster with ensemble mean (origin) is called 
group ensemble or “Group EM”. The rest four clusters are named Group 1-4. The cluster with 
analysis point is group analysis, which can be any group among five groups (in this particular 
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example, it is Group 3). Different marker colors (green, red, and blue) represent members from 
different forecast models (NCEP, CMC and ECMWF). 

Figure 5. The first and second principal components for the five-cluster solution 
based on principal components from 90 ensemble members (colors) and the ensemble 
means (black dot) initialized on 1200 UTC 3 February 2013 and valid at 1200 UTC 9 
February 2013. Markers (filled circle, filled square, filled circle with a vertical bar, 
filled triangle and open ) represent clusters Ensemble (EM), 1, 2, 3 and 4; black 
multiplication signs define the group centers for each cluster. Purple plus sign shows 
the analysis position. Black multiplication sign with a purple circle represents the 
group with analysis. 
 

For this particular example, the analysis point is around (-1.7, 0), which is closest to Group 3 and 
represents negative PC1 pattern, or a strong storm solution cluster (EOF patterns are not shown 
here). There are 12 ECMWF (blue dot with a vertical bar) members, 2 CMC (red dot with a 
vertical bar) and 1 NCEP (green dot with vertical bar) in this analysis group. Therefore, for this 
6-day forecast, 12/50 ECMWF, 2/20 CMC and 1/20 members predict a close-to-analysis 
scenario. If you look at NCEP and CMC members (green and red color for all marker), most of 
them tend to be over the top-right side (positive PC1 and PC2) of the plot, suggesting most 
NCEP and CMC members forecast a weak and offshore cyclone. In this case, NCEP members 
have the most outliers; there is one NCEP member is even out of plotting chart (the green 
triangle on the top left of figure 5).  
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A summary of 5 groups using 1000 hPa MSLP contour line and 5460 m Z500 contour line is 
shown in Figure 6. All the group means missed the correct position of analyzed cyclone. 
However, Group 3 captured the comparable amplitude of the analyzed cyclone as seen in the 
MSLP plot. In the upper level (Right panel in Figure 6), the green dashed line (Group 3) is 
closest to the purple line (analysis).  

.  
Figure 6.  Summary of 5 group means using 1000 hPa line (left) and Z500 5460 m line 
(right). Purple solid line is the analysis; black, orange, green, blue and magenta dashed 
lines represent Group EM, 2, 3, 4 and 5, respectively. Black solid line shows the 
ensemble mean using all 90 members.  
 
 

More details can be seen in spaghetti plots for each group. Figure 7 shows the spaghetti plots of 
Group 3. From Figure 5, most of the members (10) in this cluster are from ECMWF forecasts 
(thin blue contours), and the rest 3 members are from CMC (orange contours) and NCEP (green 
contour). Although Group 3 mean (purple dashed contour) shows a more northeastward cyclone 
when comparing with analysis, the amplitude is comparable between these two. 
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Figure 7. Spaghetti plot of MSLP from ensemble members in Group 3.  Dashed magenta 
contour shows cluster mean contour; green, orange and blue contours represent 
m`embers from NCEP, CMC and ECMWF. The black solid line shows ensemble mean of 
1000 hPa MSLP contour. The purple contour represents the analysis for 1000 hPa. The 
ensemble forecast is initialized on 1200 UTC 3 February 2013 and valid at 1200 UTC 9 
February 2013. 
 

Two verification regions are selected to calculate statistics of different models’ performance in 
capturing the scenario closest to analysis for 145 HIW storm events over East Coast for a 6-day 
lead time. Figure 8 shows the percentage of ensemble members that are in the same cluster with 
analysis for each forecast model, a combination of NCEP and CMC models (NCEP+CMC), and 
a combination of three models (NCEP+CMC+ECMWF). For 6-day forecast the mean percentage 
of ensemble members out of all three models is 21.1% (21.2% for region 2). On average, 22.9% 
(23.7% for region 2) ECMWF (50 total members) are in the same group with analysis, which is 
the best among the three ensembles. An average of 19.9% (20.1% for region 2) NCEP models 
(total 20) and 18.0% (15.9% for region 2) CMC models (total 20) are in the same cluster with 
analysis.19.0% (18.0% for region 2) of a combined NCEP and CMC (total 40) members are in 
the analysis groups. Both regions’ statistics suggest ECMWF has the best skill in terms of 
capturing the analysis scenarios, while the CMC model has the worst skill among three models. 
Regarding to missing model, NCEP has 14 cases that totally miss the analysis scenario; CMC 
has 16 cases missing the analysis cluster. In contrast, for all 145 cases, ECMWF model did not 
miss any of the analysis scenarios, again suggesting its stable performance in medium range 
forecast. One thing worth noting is that a combination of NCEP and CMC models only have 2 
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cases missing the analysis group, implicating a combination of these two models can 
significantly decrease the possibility of missing analysis scenario. 

 

 
Figure 8 Percentage of ensemble members in each model in the same cluster with 
analysis for 145 HIW storm cases based on 6-day forecasts for region 1 (top) and 
(bottom). Green, red and blue line  represent NCEP, CMC and ECMWF members, 
respectively; orange line represents NCEP+CMC combination members; black  line 
represenst the percentage of members out of total 90 members (NCEP+CMC+ECMWF). 
 

Table 1 Models’ average percentage in capturing analysis groups for region 1 and 2. 
 

 NCEP CMC NCEP+CMC ECMWF NCEP+CMC+ECMWF 

Region 1 19.9% 18.0% 19.0% 22.9% 21.1% 

Region 2 20.1% 15.9% 18.0% 23.7% 21.2% 

 
 

As previously mentioned, the analysis is projected onto the EOF1 and EOF2 patterns and the 
corresponding projection coefficients are assigned to the closest group among 5 groups on the 
PC1-PC2 phase space. By employing this method to each historical cyclone case, we can find 
out the analysis group representing analysis scenario at verification time for each ensemble run. 
We repeated this calculation for all 126(116) HIW cyclone cases over regions 1 and 2. One thing 
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worth noting is that the analysis could be out of the ensemble envelope in some cases, which will 
be investigated separately in the next section. Henceforth, there are 117(107) HIW cyclone cases 
in the following statistics excluding outside-of-envelope cases. 
 
Figure 9 shows the percentage of ensemble members relative to their total ensemble members in 
the analysis group for NCEP, CMC and ECMWF over region 2 at a lead time of 3 days, 6 days, 
and 9 days respectively. For the 3-day forecast (Fig. 9a), on average over all cases there are 
21.7% (20.7%) members out of 90 ensemble members in the analysis group for region 1 (2). 
Among the three models, ECMWF members show the highest percentage (24.9% of a total of 50 
members) over region1 and significantly higher than that in NCEP, CMC and NCEP+CMC; the 
average percentage is 22.7% over region2, which is significantly higher than CMC and 
NCEP+CMC. This demonstrates that for the 3-day forecast, ECMWF members have the highest 
chance to include analysis scenarios. At the same time, although the error bars overlap with each 
other, the average percentages  (18%/19.6% for regions 1/2) in NCEP (the total member is 20) 
members are higher than that in CMC members (16.4%/16.7% for region 1/2, the total member is 
also 20). Therefore, the CMC ensemble members have the lowest chance to include analysis 
scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. A summary of averaged percentage for 3-day, 6-day and 9-day forecast over both 
regions. From left to right: NCEP, CMC, NCEP+CMC, ECMWF, and analysis group. 
 
For the 6-day forecast (Fig. 9b), the mean percentage of ensemble members out of the combined 
90 members is 21.1% (20.4% for region 2). On average, 23.7% (23.2% for region 2) ECMWF 
models are in the analysis group, which is the best one among the three models. An average of 
20.0% (17.6% for region 2) NCEP models and 15.6% (16.1% for region 2) CMC models are in 
the analysis group. 17.8% (16.9% for region 2) of the combined NCEP and CMC members are in 
the analysis groups. Both regions’ statistics suggest that ECMWF has the best skill in terms of 
capturing the analysis scenarios, while the CMC model has the worst skill among three models. 

 
For the 9-day forecast (Fig. 9c) the mean percentage of ensemble members out of all three 

models is 19.5% (18.3% for region 2). On average, 18.8% (16.9% for region 2) ECMWF 
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members are in the analysis group, which becomes the worst one among the three models. An 
average of 20.5% (21.4% for region 2) NCEP models and 20.2% (18.6% for region 2) CMC 
models are in the analysis group. 20.4% (20.0% for region 2) of the combined NCEP and CMC 
members are in the analysis groups. Both regions’ statistics suggest ECMWF has the most 
limited skill in terms of capturing the analysis scenarios for day 9 forecast, while the NCEP 
model becomes the best one among three models. 

       
There are cases in which analysis is out of the multi-model ensemble envelope. Figure 10 is an 
example of comparing case with the analysis out of the forecast envelope. The outlier cases are 
defined by outside-of-envelope cases conditional on that the distance between the analysis and 
the closest member is larger than the average distances between the vertices and the closest 
members for all cases. There are 4 outlier cases for 3-day forecast, 9 for 6-day forecast, and 19 

for 9-day forecast. For the statistics in the previous section, we have excluded 9 outliers based on 
6-day forecasts considering that the outlier cases do not have the analysis group and those cases 
should not be included in the statistics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 10. Out-of-envelope case example from 3-day forecast. 
 
In some cases, the analysis can be outside of one or two individual models among three models. 
In other words, one or two models can completely miss the analysis scenarios by contributing 
zero in the analysis group. For example, in day-3 forecast for region 2, there are 17(15.9%), 
20(18.7%) and 2(1.9%) cases for NCEP, CMC and ECMWF models missing the analysis 
scenario out of a total of 107 cases. For day 3 forecast, NCEP has 24/17(20.5%/15.9%) cases, 
which totally miss the analysis scenario; CMC has 16/20(13.7%/18.7%) cases missing the 

analysis cluster among the 117/107 cases over region 1/2. On the other hand, ECMWF model 

only misses 2/2(1.7%/1.9%) of them. For day 6 forecast, NCEP has 12/12(10.3%/11.2%) cases 
that totally miss the analysis scenario; CMC has 12/15(10.3%/14.0%) cases missing the analysis 
cluster among the 117/107 cases over region 1/2. By contrast, ECMWF model only misses 

1/0(0.9%/0.0%) of them. This missing cases statistics again suggest ECMWF models stable 
performance in medium range forecast. One thing worth noting is that a combination of NCEP 
and CMC models only have 1/3(0.8%/2.8%) and 2/4(1.7%/3.7%) cases missing the analysis 
group for 3- and 6-day forecasts, implicating a combination of these two models can significantly 
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decrease the probability of missing analysis scenario. 

 
There is case-to-case variability of each individual models performance in capturing the analysis 
scenarios. We show that models, especially NCEP models, can miss analysis scenarios in some 
cases. This leads us to explore another importance performance of different EPS: the error-
spread relation. We are aiming to explore whether the ensemble models could provide sufficient 
forecast variability in simulating cyclone-related winter HIW cases over East Coast. The metrics 
we are utilizing to do cluster analysis are EOF PCs, with the standard deviation normalized to be 
1 for each case. To be consistent, we choose this metric to study the spread-error relation. It is 
worth noting that the calculations include the aforementioned outside-of-envelope cases, which 
are denoted by large error-spread ratios. 
  
Figure 11 shows the error-spread ratios for both regions and both EOF PCs based on 126(116) 

cyclone cases in three EPSs. One represents the perfect relation. The model is defined as 
“underdispersed” if the ratio is greater than 1; otherwise, it is defined as “over-dispersed” if the 
ratio is less than 1. For the 3-day forecast, the ECMWF model is the closest to 1 over both 
regions, suggesting that this model has perfect error-spread relation in 3-day forecast. Both 
NCEP and CMC models are under-dispersed, of which the former is under-dispersed more over 
both regions, suggesting the NCEP model may not have enough ensemble dispersion. On the 
other hand, the multi-model (NCEP+CMC+ECMWF) has the ratio less than 1, suggesting a 
combination of three models is over-dispersed for day 3 forecast. For the 6-day forecast, the 
ECMWF model is also a bit under-dispersed; however, it is still the closest one to perfect value 
among three models. NCEP and CMC models have comparable level of under-dispersion, with 
the latter being more underdispersed for PC1 over region 2. The multi-model is also under-
dispersed in day 6, but it is closer to one than the rest, suggesting the benefit of combining 
different EPSs to provide more forecast  variability for medium range forecast. For the 9-day 
forecast, all three models are severely underdispersed, of which the ECMWF model is even 
under-dispersed more in PC1 over region 2 than the rest. The multi-model is always closer to 
perfect value, again showing the increased forecast  variability when combing models. 
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Figure 11. The ratio of RMSE to spread of PC1 and PC2 over region 1 and region 2. 1 
represents the perfect error-spread relation. The green square, magenta plus, blue cross, and 
black circle represent NCEP, CMC, ECMWF and multimodel mean, respectively. The black line 
is the reference line 1. 
	  

Forecasters tend to look more at ensemble mean as guidance to the forecast scenarios especially 
in medium-range forecast. However, it is not clear whether the ensemble means have more 
chance to include the real scenario. In this study, we provide a new way to explore this problem. 
Since we can always find out the group including analysis in our historical cyclone cases, it is 
easy to check whether this group is the same with the ensemble mean group or Group EM, which 
can represent the ensemble mean scenario. Figure 12 shows the ratio of cases when the analysis 
group is the same with Group EM to the total cases equally divided by five groups. If the ratio is 
great than 1, the Group EM has more chance to include the analysis scenarios, otherwise, the 
Group EM doesn’t include the analysis more often than any other group. For the day 3 forecast, 

the ratios for both regions are greater than 1, suggesting the ensemble mean group include the 
analysis scenario more often than the rest groups, which particularly hold true over region 1 with 
the ratio greater than 1.5. However, for the day 6 and day 9 forecasts, the ratios are either close 
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to 1 (region 1) or even less than 1, indicating the analysis scenario is not more likely to be in the 

ensemble mean group than other groups. For day 9, the ensemble mean group even has less 
chance to include analysis. This result suggests that focusing too much on the ensemble mean 
could be misleading in many cases for medium to longer range forecasts. Based on the previous 
results, the ECMWF model seems to be the best one among three in terms of capturing the 
analysis scenarios. When counting the cases in which more than 40% of ECMWF members 
contributing to the analysis group (not shown), a majority of the ensemble members are from the 
ECMWF ensemble model for both day 3 and day 6 forecast. However, this is not the case for day 
9 forecast. Only less than one quarter cases have the dominant members from ECMWF model. 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
 
 
 
 
 
 
 
 
Figure 12. The ratio of the case numbers with the analysis scenario similar to the ensemble 
mean group to the 20% the total cases over both regions. 
	  
To further look at this problem, we have counted the cases when the analysis falls into the same 

quadrant including ECMWF means. For day3 and day6 forecasts, 34% (37%) and 30% (32%) 
cases over region1 (region 2), the analysis falls into the ECMWF means’ quadrants. For day 9 
forecast, these values drop to 21% (24%). On the other hand, in only 21% (24%) and 15% (16%) 
cases, the analysis falls into the same quadrant with NCEP+CMC  means for day 3 and day 6 
forecast. This value increases to 28% (32%) in day 9 forecast. 
 
To sum up, the analysis does fall into the ECMWF means’ quadrants more often than the 
NCEP+CMC means for day 3 and day 6 forecast. However, it falls into the latter’s quadrants 
more often for day 9 forecast. One thing worth noting is that even in medium range forecasts, 
there are still around two thirds cases in which the analysis is outside the ECMWF means 
quadrants. For example, in the winter of 2014-2015, the ECMWF models tend to have problem 
in forecasting the correct position of cyclone in several HIW storm cases over East Coast, 
implicating  that forecasters need to keep in mind that it could be misleading to rely on the 
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ECMWF models ensemble output too much when expecting a severe storm impacting East 
Coast. 
 
	  
ii. Validation of extratropical cyclones in operational ensembles 

CSTAR graduate student (Nathan Korfe) validated extratropical cyclones within the global 
ensembles. The approach and results are described in detail in Korfe and Colle (2017). The 
Hodges surface cyclone-tracking scheme is used to construct cyclone tracks using 6-hourly 
MSLP from the Observing System Research and Predictability Experiment (THORPEX) 
Interactive Grand Global Ensemble (TIGGE), which includes the 50-member European Centre 
for Medium-Range Weather Forecasts (ECMWF), the 20-member Global Ensemble Forecast 
System (GEFS), and the 20-member Canadian Meteorological Centre (CMC). The ECMWF 
ERA-Interim Re-Analysis MSLP data has also been tracked to verify cyclone properties for the 
October to March cool seasons from 2007-2015. It is important to note that each forecast and 
analysis cyclone is created with a unique storm identification number (ID) that identifies all the 
points in the cyclone lifetime. 

Some of the questions being addressed were the following: 
1. How well do the operational ensembles (NCEP, CMC, ECMWF) predict cool 

season extratropical cyclones with lead times from days 1-6? 
2. What are the intensity biases in the ensembles? Where are the largest intensity 

errors located within domain? 
3. What flow patterns are associated with the high error cyclone cases in the 

ensemble?  
Figure 13 shows a sample of the validation results by illustrating the cyclone displacement and 
intensity mean absolute errors for the CMC, NCEP, NCEP, and EC ensembles as a function of 
forecast lead time. Error bars are calculated using a bootstrap resampling approach (over 1000 
random iterations of the data). For cyclone displacement, the CMC mean ensemble has the 
largest track errors, while the NCEP and EC ensembles are similar from hours 0 to 72. After 
hour 72, EC has the smallest displacement errors. The results are similar for cyclone central 
pressure errors. It is interesting that the NCEP control member of the ensemble has similar errors 
to the mean of all members, which suggests that there are cases in which ensemble mean has 
difficulties with the forecast as well. Figure 14 illustrates that the relatively deep cyclones are 
underpredicted after day-2, especially in the CMC and NCEP ensembles. 
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Figure 13. Cyclone displacement (left) and central pressure (right) mean absolute errors for the 
day 4-6 ensemble mean forecasts for the East Coast and western Atlantic for the ECMWF, 
NCEP, and CMC for lead times from hour 0 to 144. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 14. Cyclone central pressure mean errors for the day 4-6 ensemble mean forecasts for 
relatively deep observed and simulated cyclones (> 1.5 standard deviation) for the East Coast 
and western Atlantic for the ECMWF, NCEP, and CMC. 
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iii.  Event-based verification of high impact weather – Rossby Wave Packets 
 
Rossby wave packets (RWPs) have been linked to high impact weather, so it is important to 
understand how well ensembles can predict RWPs. This builds on our previous CSTAR that 
focused more on deterministic predictions of these RWPs.  
 
The ensemble data used is the GEFS (NCEP Global Ensemble Forecast System) reforecast v2 
data, which is similar to the GEFS operational configuration on February 2012. This set of data 
is generated once daily at 0000 UTC, producing an 11-member forecast, 1 control + 10 
perturbed. The variables used in this work are geopotential height (Z300), zonal wind (U300), 
and meridional wind (V300) at 300hPa at 1°x1° resolution. The time period is from 1 Nov 1985 
to 31 Mar 2013, which only includes cool seasons (NDJFM). We have mainly used day 1 to day 
7 control forecasts as well as ensemble forecasts, which will be extended to longer lead times in 
the future. 
 

a) Verification of ensemble data quality in reforecast data over U.S. East coast and western 
Atlantic  

Since GEFS reforecast data only have 11 members, we also used ECMWF ensemble, which has 
50 members and are often considered to be the best ensemble data, to verify the quality of the 
reforecast ensembles. We have compared RMSE of ensemble mean of Z300 in 7-day forecasts, 
ensemble spread, and anomaly correlation (ACC) in both data sets for five cool seasons from 1 
Nov 2008 to Mar 2012 (Fig. 15). The correlations between two data sets for these three quantities 
are 0.609, 0.608, and 0.659. On average, the RMSE of ensemble mean Z300 (88.9 m) in 
ECMWF data is around 9% lower than GEFS reforecast (97.1 m); the ACC in ECMWF (0.785) 
is also slightly higher than that in reforecast data (0.740). The ensemble spread of Z300 in 
ECMWF (78.2 m) is around 11% higher than that in reforecast data (70.5 m).  Figure 15 shows 
an example of RMSE, ACC, and ensemble spread for the 2012-2013 cool season. Although 
those two datasets are not perfectly correlated, the maxima and minima in general match each 
other. Since we are interested in extreme cases with very poor predictability and good 
predictability, we believe the GEFS reforecast data meets our needs. 
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Figure 15.  RMSE (top) and ACC (middle) of ensemble mean of Z300; ensemble spread (bottom) 
of Z300 from Nov 1st 2012 to Mar 31st 2013. All these three quantities are calculated over the 
region 22°N-62°N, and 100°W to 45°W (Verification region).  
 
Empirical Orthogonal Functions (EOFs) have been employed in a variety of meteorological 
analyses due to its capability to reduce the dimensionality and to efficiently describe the coherent 
variability in large datasets. When applying this method to the datasets, which contain the same 
variable at different times, a modified form EEOF analysis (Weare and Nasstrom 1982) is often 
referenced. In an extended EOF analysis, successive patterns of the same variable within one 
EEOF are interpreted as the propagation or evolution in the time. 
 
We have applied EEOF method to find dominant variance patterns of RWP amplitude anomaly 
during initial times and verification times corresponding to large forecast error cases. By 
applying this method, different types of wave packets are determined, which propagate along 
different paths. Based on the top and bottom principal coefficients (PCs) of each EEOF pattern, 
we have also composited the corresponding forecast errors and mean flow regimes.	  
 
We have also applied composite analysis to the wave packet characteristics of large error cases 
and large spread cases. The RWPs are represented by their amplitude, which is calculated using 
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Zimin’s method (Zimin 2006) based on U300 and V300.  In one example to show multi-model 
ensemble, we have used fuzzy clustering method (Bezdek 1981) to group ensemble models 
based on their leading two PCs within their forecasts. 
 
b) Different types of Rossby wave packets in large forecast error cases and the corresponding 
flow regimes 
 
Based on the time series of RMSE of 7-day Z300 control forecast (Fig. 16) as well as the 
anomaly correlation (not shown), we have selected 203 large error cases and 213 good forecast 
cases. We have also used RMSE and ACC of 7-day ensemble mean of Z300, the large error 
cases matched very well. The correlation between RMSE time series of control forecast and 
ensemble mean is 0.873.    

 
Figure 16.  RMSE of 7-day control forecast of Z300 over east coast and western Atlantic oceans. 
Red dots show the large error cases while the blue dots show the good forecast cases. 
 
Based on 203 large errors cases, we have composited Rossby wave packet amplitude anomaly 
relative to climatology as can be seen in figure 17. A positive wave packet anomaly propagates 
from day 2 to day 7, which suggests medium range forecast busts are associated with the 
existence of enhanced Rossby wave packets propagating across central and eastern Pacific. 
Large forecast errors tend to follow enhanced wave packets. From day 4 to day 7, large errors 
also tend to be maximized over the leading regions of positive wave packets amplitude anomaly. 
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Figure 17.  Composited RWPA anomaly (shaded) conditional on large 7-day forecast errors 
from day 1 to day 7. Day 7 is the verification time for large error cases. The black contour shows 
regions with significant larger absolute forecast errors than climatological errors. 
 
 
iv. Climatology of ensemble sensitivity in multi-model ensemble 

 
1. Motivation 

• Derive ensemble sensitivity to determine areas where perturbations produce the 
largest impact on the U.S. East Coast winter storms forecast 

• Investigate different paths of sensitivity for different development scenarios of 
cyclones 

2. Data and methodology 
• A combination of NCEP, CMC and ECMWF ensemble data from TIGGE archive 
• U.S. East coast cyclone cases (102) are defined as minimum pressure <1000 hPa 

in GFS analysis at verification time over a verification box (32N-45N, 78W-62W) 
• 3-day and 6-day MSLP and geopotential height at 500 hPa (z500) forecast used 
• Ensemble sensitivity analysis using EOF PCs of MSLP as forecast metrics 
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• Composite analysis 
• EEOF method 

 
Sensitivity analysis has proven to objectively quantify the relation between forecast metrics and 
state vectors at initial time or earlier forecast time steps (Torn and Hakim 2008; Ancell and 
Hakim 2008; Chang et al. 2013). Garcies and Homar (2009) applied ensemble sensitivity to the 
real atmosphere and derived climatologically sensitivity regions for Mediterranean intense 
cyclones. Our work follows our previous studies on applying ensemble sensitivity analysis to 
operational ensemble, and derives the model climatological sensitivity regions for U.S. East 
Coast cyclones to provide insights into the predictability of winter storms in medium range 
forecast. 

Figure 18 shows the 6-day forecast sensitivity using EOF PC1 of MSLP at 144 h. Before 96h, 
the ensemble sensitivity is mainly over the North and East Pacific oceans, associated with the 
Aleutian low over northeastern Pacific. From 96h to 144h, surface sensitivity is associated with 
the cyclone originating from U.S. South, increasing from <0.3 at 96h to >0.8 at 144h. The 
surface sensitivity is mainly a monopole at 144h, indicating that it is associated with the cyclone 
intensity uncertainty. Meanwhile, the upper level sensitivity shows a dipole around the East 
Coast trough and its downstream ridge at 144h, again suggesting the strength of this trough and 
its downstream ridge have an impact on the surface cyclone intensity forecast. 
Ensemble sensitivity for EOF PC2 (figure 19) shows robust signals at 48h associated with short 
wave troughs over central Pacific at both surface and upper levels. These sensitivity signals 
seemed to propagate eastward across western coast of U.S. at 72h. From 96h to 144h, the surface 
sensitivity signals showed a dipole associated with the surface cyclone, suggesting the EOF2 
pattern is on average associated with the forecast uncertainty in cyclone positon. Meanwhile, the 
upper level sensitivity showed a triple-center structure, suggesting the shift of the East Coast 
trough and its adjacent systems could affect the cyclone position forecast uncertainty. 
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Figure 18. Mean of absolute ensemble sensitivity using EOF PC1 for MSLP (left, shaded) and 
Z500 (right, shaded) over 102 cyclone cases and ensemble mean MSLP (left, black contours) and 
Z500 (right, black contours) at different lead times. The verification time is 144h. 
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Figure 19. Mean of absolute ensemble sensitivity using EOF PC2 for MSLP (left, shaded) and 
Z500 (right, shaded) over 102 cyclone cases and ensemble mean MSLP (left, black contours) and 
Z500 (right, black contours) at different lead times. The verification time is 144h. 

 
In ensemble forecast, each ensemble run represents a flow-dependent output. Also, there 
exists large inhomogeneity in U.S. East Coast cyclones. Therefore, the ensemble sensitivity 
could show different characteristics for different types of cyclone. Extended EOF (EEOF) 
has been performed to find different sensitivity paths as well as the corresponding cyclone 
development scenarios. 
 
Figure 20 shows one EEOF pattern for sensitivity using EOF PC1. This pattern has large 
sensitivity associated with the eastern side of the surface low over Gulf of Alaska and its 
downstream ridge. The initial sensitivity develops to a downstream sensitivity pair 
associated with a surface low east of mid-Atlantic coast at 72h. Meanwhile, the upper-level 
trough also shows a pair of sensitivity around the East Coast trough. This pattern suggests 
that the northeastward of the Alaska low and the upper level trough are associated with the 
weakening and eastward shift of the surface cyclone at verification time. 
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Figure 20. EEOF negative pattern 1 of ensemble sensitivity for EOF PC1 of MSLP (left, shaded) 
and Z500 (right, shaded) and the corresponding mean MSLP (left, black contours) and Z500  
(right, black contours). 
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v. Spread anomaly tool 

Mean and spread (standard deviation) are the most common viewed outputs of statistics from an 
ensemble. These two statistics provide a “first-order” assessment of the model solution, detailing 
the “best-guess” (mean) of all the ensemble members as well as the amount of variation (spread) 
represented. These statistics are often plotted onto a spatial 2D field for outputted variables, as 
well as post-processed variables.  
 
Although spread provides a basic assessment of the variation or uncertainty of a model run, it 
does not necessarily help to detail a more in depth understanding of what makes the forecast 
uncertain. It also does not provide an explanation as to how a particular anomaly pattern in a 
forecast compares to similar anomaly patterns in space, orientation, and/or magnitude. The issue 
arises as to how we can best assess ensemble variability in the reference of similar events in the 
model climatology (“m-climate”). The Ensemble Situational Awareness Table (ESAT) managed 
by the National Weather Service compares forecasts from the North American Ensemble 
Forecast System (NAEFS) and Global Ensemble Forecast System (GEFS) to reanalysis 
climatologies (r-climate) and m-climates. Standardized anomalies, percentiles and return 
intervals are calculated to assist in identifying potentially significant weather events. 
The objectives of this spread tool are to: 

• Determine how to assess spread of a forecast in relation to similar events and 
develop a “metric” of confidence, or a method to convey the uncertainty, of a 
forecast in relation to events of similar anomaly.  

• Determine the best practices of applying the tool to the forecast process. 
• Find reasons behind the causes of anomalous spread in high spread events. 
• Determine differences between the GEFS and GEFS Reforecast. 

 
Data/Methods 
The ESRL PSD GEFS Reforecast 2 (1 degree x 1 degree resolution) is utilized as the m-climate 
for this project from 1984-2015 for December, January, and February (DJF). The next version of 
the program will use a 3-month m-climate centered about the month of the forecast to expand the 
range beyond DJF (i.e. for March and November cyclones) as well as expand to 2016 for more 
data. Forecast case studies are taken from the GEFS retrospective run, TIGGE, and GEFS real 
time runs via NOAA. The real time product uses the THREDDS data server to access the latest 
GEFS runs’ ensemble mean and spread. For the purposes of this project, we utilize mean sea 
level pressure, 500mb geopotential heights, and surface temperature to assess the spread anomaly 
and run the tool on. Future variables will include 850mb temperature and precipitable water.  
The forecast are loaded as well as the m-climate for the variable and forecast hour. The data is 
input as a 3-dimensional array, which has dimensions of time, longitude, and latitude of the 
continental U.S. Each grid-point for the 30-year climatology has a distribution on which statistics 
can be performed upon. The distributions of variables are essentially Gaussian in nature, with a 
slight extreme in the tails (due to the rare extreme low or high pressure, for instance). Due to 
this, we can calculate a z-score, or standardized anomaly, for the forecast and all of the values 
within the m-climate at each grid-point, 
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    (1) 

where F is the forecast, C is the m-climate, and sigma is the standard deviation of the m-climate. 
Given the z-score, we can use the values as a range to subset a new m-climate of similarly 
anomalous events, and a subsequent m-climate of spread for those same forecasts. For the 
purposes of obtaining a large enough sample size, we find that a standard different range will be 
discussed as well). When a valid value in the mean climatology is found the spread of that 
forecast data-point is put into the new m-climate. The resulting outcome is a modified ensemble 
mean m-climate, including only the spread from the m-climate for events of similar magnitude. 
In the cast of insufficient sample size, a 2x2 box is initiated for less than 20 sample data values, 
and a 5x5 for less than 10 about the grid-point. The resulting modified spread m-climate can be 
input into equation (1), and a new standardized spread anomaly product can be created (Fig. 21). 
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3. Recent Interaction with Operational CSTAR Partners 
 
For this project several operational tools were developed to interpret multi-model ensemble 
predictions for extratropical cyclones along the U.S. East coast for the medium range (days 3-6). The 
tools include:  

1. An ensemble sensitivity tool to understand the upstream origins of some of the forecast 
uncertainty in the models 
(http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html; 
Zheng et al. 2013);  

2. Fuzzy clustering tool to objectively identify different East coast storm scenarios/clusters: 
(http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/FC_Main.html; Zheng et 
al. 2017);  

3. A multi-model ensemble cyclone tracking page, which includes bias correction for the GEFS 
system: (http://smokey.somas.stonybrook.edu/cyclonetracks/). 

4. An ensemble Rossby wave packet page for the GEFS system: 
http://smokey.somas.stonybrook.edu/wavepackets/index.html. 

5. An ensemble spread anomaly tool (http://blue.somas.stonybrook.edu/ssa/index.html) for 
similar anomalous weather days as defined using other reforecast tools, such as the 
Situational Awareness Tool. 

 
As part of our CSTAR project, Dr. Colle gave webinars on how to interpret/use many of the above 
tools. We have also introduced some of them to the Weather Prediction Center (WPC) Winter 
Weather Experiment (WWE). We also have a CSTAR list-serve to discuss the tools during East 
coast winter storms. However, one challenge has been to determine how to use these tools in the 
forecast process. Dr. Colle visited NCEP/WPC from 9 January 2017 to 20 January 2017 to discuss 
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the CSTAR project and shadow the forecasters there to determine how best to use these tools 
(strengths and limitations) and think of new ways to display ensemble data.  There were four main 
goals of the two-week visit to WPC: 

1. Current Use of Ensemble Products in the Forecast Process. One goal is to learn how 
forecasters use existing NWP models and tools in the forecast process for various winter 
weather phenomena during the cool season, ranging from heavy orographic precipitation, 
southern U.S. cool season convective storms, and extratropical cyclones.  As a researcher, 
there is often a disconnection between knowing what tools/models may be available and how 
they are used operationally. Understanding this helps transition any research to operations. 
This will be accomplished by shadowing forecasters on the medium range and short-range 
WPC desks each day. Dr. Colle will learn about current pros and cons of the ensemble 
products from a forecaster perspective.  

2. CSTAR Tool Demonstration. As part of the daily forecaster shadowing, Dr. Colle will 
provide his insight how the CSTAR tools listed above may be able to be used in the forecast 
process.  This interaction will help the forecaster(s) better understand these tools, while at the 
same time providing feedback from the forecasters on how to improve these tools, which also 
will help the R2O process. Dr. Colle will work with the forecasters to see if a protocol can be 
developed to incorporate these tools into the forecast process. Case examples will be saved 
for future reference and collaboration. 

3. Transition of Products to WPC. Many of the tools listed above are driven by web pages run 
at Stony Brook University. However, the calculations (for ensemble sensitivity and fuzzy 
clustering) are done at EMC, where the GEFS, EC, and CMC ensemble data resides. It may 
be more efficient if some of these tools were implemented directly at WPC, so Dr. Colle will 
work with the staff there to determine how best to port over. We have precedence in doing 
this, since Mike Bodner at WPC helped to get Stony Brook’s Rossby Wave Packet amplitude 
code working at WPC.  

4. Seminar and Tutorial. Dr. Colle will provide a seminar on some of the latest understanding of 
single and multi- snowbands within extratropical cyclones (from his NSF project), as well as 
a tutorial overview of the tools in his CSTAR project.  

 
Below was the schedule for B.Colle: 
 
Monday 1/9/2017: 
9-10am: Tour and Introductions 
10-10:30: Weather Discussion 
10:30-1045: Brief Meeting with the Winter Weather Experiment (WWE) Group 
10:45-noon: Discuss SBU CSTAR tools and output with Mike Bodner et al. 
1-2:30: Met with Dan Petersen at the medium range desk 
2:45-3:45: Mike Bodner presented North Pacific Jet Tool for 8-10 day forecast 
 
Tuesday 1/10/2017: 
8:45-9:45am: Meet with Dan Petersen at the winter weather desk 
10-10:30: Weather Discussion 
11-noon: Met with Jim Nelson to discuss AWIPS update, coordination with WFOs, and 
precipitation type issues 
Noon-1:30: Met with Mike Erickson to discuss verification (MET software) 
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1:30-3pm: Met with Mary Beth at medium range desk 
 
Wednesday 1/11/2017: 
9-10am: Seminar about EMC GEFS updates 
10-10:30: Weather Discussion 
10:30-noon: Meet with medium range group to discuss 8-10 day and how to extend Stony Brook 
tools to this lead time. 
1:30-2:30pm: Met with Bruce Veenhuis to discuss post-processing (National Blend, MOS, bias 
correction, and RTMA). 
2:30-3:30pm: Met with Bruce Sullivan at winter weather desk 
 
Thursday 1/12/2017: 
9-10am: Seminar about EMC GEFS updates 
10:10:30: Weather discussion 
10:30-noon: 8-10 day experiment test day 
2:30-3:30pm: Met with Marc S. on day 2-3 QPF desk 
 
Friday 1/13/2017:  
9-10am: Met with Yuejian Zhu at EMC to discuss CSTAR collaboration 
10-10:30: Weather discussion 
10:30-11:00: Met with Bill Laberson about Situational Awareness Table 
11-11:30am: Met with David Novak to discuss ensembles within WPC 
 
Tuesday: 1/17/2017: 
10-10:30: Weather Discussion 
10:30-noon: Participate in Winter Weather Experiment 
1-2pm: Met with Mark Klein about WWE, flash flood expt, and forecaster training 
2-3pm: Met with forecaster (Mike) at the Alaska desk. 
3-4pm: Met with Chris Bailey about Autoblend 
 
Thurs: 1/19/2017: 
9-10 am: Met with David Novak and Jim Nelson about my visit 
10-10:30am: Weather Discussion 
 
Some of the issues discussed: 
1. Ensemble tools are still limited: 

* Medium range: spaghetti plots separated by model (EC, GEFS, and CMC) 
            * GEFS stand anomaly to day5 

* Use anomaly in CPC teleconnection tool, see what members match teleconnection 
pattern (very static – need to combine with evolution and clusters). 
European Center (EC) in 3 clusters (1-17; 18-24,35-50) 

2. 8-10 day: extend CSTAR tools; combine with other new tools, such as Pacific jet tool: 
(ensemble sensi targets upstream jet region, or Rossby wave packet mean/spread – is there a 
dynamical link to the location. 
3. Winter Weather: NAM freezing rain prob, but not GFS and GEFS. 
4. NAWIPS used at WPC, but AWIPS at WFOs 
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5. No ECs at WFOs 
 
3.1 Winter Weather Experiment 
Stony Brook University actively participated in the Winter Weather Experiment (WWE), which 
was held from mid-January to mid-February 2015 at the Weather Prediction Center (WPC). The 
goal of the WWE is to test various ensemble products related to winter weather, such as 
probabilistic maps for snowfall, freezing level, precipitation amount, etc…, and products related 
to snow liquid water ratio. Our involvement also meant that we got to incorporate our ensemble 
sensitivity tools into the medium range part of the experiment, which typically took place during 
the afternoon. 
 
Three Stony Brook students participated for two weeks of the 4-week experiment (Matthew 
Sienkiewicz and Sara Ganetis in week 1, and Nathan Korfe in week 3). One week of SBU 
participation (week 2) was cancelled because of the lack of significant winter weather.  The 
students not only participated in the discussions, but each day they wrote a summary of 
discussions each day, and sent it to the Stony Brook CSTAR listserve 
(cstar_stony_brook@infolist.nws.noaa.gov).  Below are a couple of example write-ups. 
Day 1 of WWE (13 January 2015): 
 
Experiment Forecast Challenge 
A shortwave disturbance is forecast to swing into the Mid-Atlantic region during the first half of 
Wednesday, 14 Jan. The objective of the winter weather experiment in the short range is to 
quantify how much snow is expected to fall in this region in a 24-h period. For the period ending 
at 00Z 15 Jan, the group used a variety of operational and experimental guidance for the forecast. 
The main challenge regarding this event was with precipitation type and how that would affect 
the snowfall amounts.  
 
Highlighted Tools & Rationale 
The conventional guidance that we used was the 09Z 13 Jan operational SREF and the 12Z 13 
Jan NAM. The SREF mean 24-h snowfall valid at 00Z 15 Jan showed a swath of 1-4" extending 
from central VA to the coast of the Delmarva Peninsula so that was where we focused our 
attention. The SREF probability of >1" in 24 hours (Fig. 22a) ending 00Z 15 Jan exceeded 80% 
just south of the Potomac River. Figure 22b shows the individual members colored by model 
core (ARW, NMM, NMMB), the ARW members (labeled EM on the plot) were the coldest due 
to a deeper shortwave and thus had a larger areal extent (and low spread) of 1" of snow.  
 
Moving our attention to more experimental guidance, we decided to weight our forecast on the 
12Z NAM and used an additional NAM product that uses the instantaneous rime factor (from the 
lowest model level) to decrease the snow-to-liquid ratio (SLR) if the rime factor is large. As 
such, areas of precipitation type transition may become clearer if the modeled snowfall decreases 
compared to the operational guidance. The rime factor and percent of frozen precipitation 
(reaching the ground) provided slightly increased confidence to our snowfall amounts in northern 
VA but gave us the grounds to trim down some of the amounts in southern VA (Fig. 23). To 
conclude, we did forecast >1" of snow north and west of D.C. extending into Northern Virginia. 
The microphysical products helped increase our confidence (slightly) for this event but it 
remains a relatively low-confidence forecast. 
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Figure 22. (a) Probability exceeding 1 inch in 24 h using all SREF members ending at 0000 
UTC 15 January 2015 (hour 39). (b) Same as (a) except for spaghetti plot of the different SREF 
cores (see color legend at bottom of plot) showing the outline of 1 inch in). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Rime factor for the 12-km NAM at 1200 UTC 14 January 2015 (hour 24). 
 
3.2 Environmental Model Center (EMC) at NCEP 
We collaborated with EMC (Yuejian Zhu and Yan Luo) to get our clustering tool operational for 
this winter season using the NCEP, CMC, and GEFS ensembles. Our original code was in 
Matlab to do the clustering, but we converted the code to FORTRAN, so it can run at EMC. The 
clustering tool was made operational in late January 2015.  Examples products were shown 
above. 
 
3.3 Weather Prediction Center 
Stony Brook was the primary university involved in the 2015 Winter Weather Experiment in 
January – February 2015. Three graduate students participated at WPC, and posted daily reports 
(see above) on the Stony Brook CSTAR Listserve, which were followed by other online 
discussions. The PI (Colle) also participated in most of the 12-12:30pm WWE weather briefings, 
which were broadcast online for universities and NWS offices. 
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3.4 National Weather Service Forecast Offices 
The National Weather Service–New York City continues to maintain the ALPS (ensemble 
viewer) installation as changes are made to the NWS computer systems and data ingest. The 
ALPS software is described in more detail in previous CSTAR reports. The latest instructions to 
install ALPS can be found on our CSTAR web site: 
http://dendrite.somas.stonybrook.edu/CSTAR/Tutorials.html. 
Stony Brook also collaborated with the KOKX forecast office (as well as WPC) on the analysis of 
the 8-9 February 2013 blizzard on Long Island, during which nearly a meter of snow fell. The rapid 
precipitation phase transitions around the primary snow band are a good test for the dual-Pol radar 
data and models. Therefore, a Maproom article has been published in the Bulletin of the American 
Meteorological Society (see products below). 
The field offices have been using the ensemble sensitivity tool in operations for some major storm 
events. Below is an example from an AFD from the New York City NWS office: 
 
AREA FORECAST DISCUSSION NATIONAL WEATHER SERVICE NEW YORK NY 422 PM EST SAT JAN 31 
2015  .SYNOPSIS... HIGH PRESSURE BRIEFLY BUILDS IN TONIGHT...BEFORE A COLD FRONT 
APPROACHES AND CROSSES ON SUNDAY. LOW PRESSURE APPROACHES FROM THE OHIO VALLEY AND 
PASSES JUST SOUTH OF LONG ISLAND MONDAY. THE LOW TRACKS WELL TO THE EAST MONDAY NIGHT 
WITH HIGH PRESSURE BUILDING IN ITS PLACE. HIGH PRESSURE WILL LARGELY PREVAIL FOR THE 
REMAINDER OF THE WEEK WITH THE EXCEPTION OF A COLD FRONTAL PASSAGE LATE WEDNESDAY. A 
DEVELOPING LOW OVER THE GULF COAST STATES LATE IN THE WEEK LOOKS TO TAKE A TRACK WELL 
SOUTH AND EAST OF THE AREA.  &&  .NEAR TERM /THROUGH SUNDAY/... NEAR ZONAL FLOW 
TONIGHT WITH WEAK HIGH PRESSURE BUILDING IN FROM THE WEST THIS EVENING...AND THEN A 
POLAR FRONT APPROACHING FROM THE GREAT LAKES.  WINDS AND GUSTS GRADUALLY SUBSIDE 
THROUGH MIDNIGHT...WITH INCREASING HIGH CLOUDS OVERNIGHT.  TEMPS WILL NOT BE QUITE AS 
COLD WITH LOWS GENERALLY IN THE TEENS...EXCEPT 20S NYC/NJ METRO...WITH NEUTRAL TEMPS 
ADVECTION AND LIMITED OPPORTUNITY FOR RADIATIONAL COOLING. COULD SEE SOME SINGLE 
DIGITS IN PINE BARRENS AND INTERIOR TRI-STATE WITH DECOUPLING BEFORE CLOUDS MOVE IN.  
PHASING NORTHERN STREAM AND SW US SHORTWAVE ENERGY BEGINS TO DIG INTO THE CENTRAL US 
ON SUNDAY WITH GENERALLY WSW UPPER FLOW.  A WEAKENING POLAR FRONT APPROACHES THE 
REGION ON SUNDAY...BUT OTHERWISE INCREASING AND LOWERING CLOUDS AHEAD OF NEXT 
APPROACHING STORM SYSTEM. A FEW SNOW FLAKES MAY BE OBSERVED OVER NJ VERY LATE IN THE 
DAY. TEMPS GENERALLY IN THE UPPER 20S TO LOWER 30S.  &&  .SHORT TERM /SUNDAY NIGHT 
THROUGH MONDAY/... MAIN STORY WILL BE NEXT IN A SERIES OF WINTER STORMS AFFECTING THE 
REGION SUNDAY NIGHT INTO MONDAY.  MODELS ARE IN GENERAL AGREEMENT WITH LOW PRESSURE 
TAKING SHAPE OVER THE CENTRAL PLAIN TONIGHT...TRACKING INTO THE OHIO VALLEY ON SUNDAY 
AND THEN JUST SOUTH OF THE REGION SUNDAY NIGHT. OVERALL TREND HAS BEEN SLIGHTLY 
FURTHER NORTH AND WETTER WITH THIS SYSTEM.  BASED ON COUPLED JET STRUCTURE...TIGHT LOW 
/MID- LEVEL THERMAL STRUCTURE...AND GULF MOISTURE FEED OF 2-3 STD PWATS...CONFIDENCE 
IS HIGH IN AT LEAST A 3/4 TO 1 1/2 INCH QPF EVENT FOR THE ENTIRE AREA. THIS IS BOURNE 
OUT IN SREF/GEFS/CMCE 1 INCH/24 HR QPF PROBS.  SIGNIFICANT UNCERTAINTY LIES IN P-
TYPE...PARTICULARLY ALONG THE COAST...WITH A SPREAD OF ABOUT 50 MILES BETWEEN 
OPERATIONAL SOLUTIONS AND ENSEMBLE MEANS IN HOW CLOSE TO THE COAST THE LOW GETS AND 
THE POSITION OF THE TIGHT THERMAL GRADIENT ACROSS THE REGION. SBU ENSEMBLE SENSITIVITY 
SHOWING THIS N/S TRACK UNCERTAINTY IN THE 00Z GEFS/CMCE/ECMWF ENSEMBLES...WITH 
SENSITIVITY LYING IN DEGREE OF PHASING/INTERACTION BETWEEN NORTHERN STREAM SHORTWAVE 
ENERGY DROPPING DOWN THROUGH MONTANA AND THE CUTOFF UPPER LOW OVER THE SW US...AND 
RESULTANT STRENGTH OF TROUGH APPROACHING THE EAST COAST SUNDAY NIGHT/MONDAY AND 
UPSTREAM RIDGING. A STRONGER TROUGH...MEANING MORE UPSTREAM RIDGING...AND A FURTHER 
NORTH TRACK. THIS INTERACTION IS NOT COMPLETE FOR ANOTHER 24 HOURS...SO COULD TAKE 
UNTIL THEN FOR CONFIDENCE IN P-TYPE FORECAST INCREASES.  WITH CONFLUENT FLOW ACROSS 
NORTHERN NEW ENGLAND/SE CANADA...ARCTIC HIGH SHOULD BE LOCKED INTO THAT AREA. PREFER 
TIGHTER THERMAL STRUCTURE ALOFT OF NAM/ECMWF/CAN VERSUS MORE DIFFUSE THERMAL STRUCTURE 
OF GFS IN THIS SITUATION...BUT QUESTION IS LOCATION OF THIS BAROCLINIC ZONE. MODEL 
SOLUTIONS POINTING TO DIFFERING DEGREES OF WARMING IN THE 800-950 LAYER MON MORNING 
INTO EARLY AFT...BUT TREND IS TOWARDS MORE WARMING.  
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4. Products and Presentations 
 
4.1 Products 
 
In addition to the several ensemble tools developed on our CSTAR web page we also explored 
some of the other tools available to forecasters. 
 
4.1 AWIPS ensemble display 
Several ensemble products were tested at ER with the new AWIPs build. Figures 24 and 25 
shows two sample products. Figure 24 shows an example in which the user can select the   
ensembles used in the ensemble mean as well as a distribution of precipitation amounts for a 
point of interest.  This helps put the ensemble mean in perspective by also illustrating the 
maximum and minimum values at this point. Figure 25 shows the AWIPS capability in which the 
user can display the different member solutions of interest as a series of post-it charts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. An example mean precipitation plot and histogram for a point using the GEFS 
ensemble and the AWIPS ensemble system. 
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Figure 25. An example of the AWIPS ensemble tool showing sea level pressure forecasts from 9 
different GEFS members. 
 
 
4.2 CSTAR Tutorials  
 
Dr. Brian Colle gave a webinar/tutorial to the KBOX (Taunton, MA) office on 24 January 2014 
on RWPS and ensemble sensitivity.  
https://drive.google.com/file/d/0B_ap3QL2sodKb280Z3Vka3dnRVE/edit?usp=sharing 
 
There are other detailed tutorials were added to the ensemble sensitivity web page, with the 
direct link: 
http://dendrite.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/Extras/ReadMe_PlotInterpr
etations.pdf 
 
The following three online tutorials are online: 
http://dendrite.somas.stonybrook.edu/CSTAR/Tutorials.html. As a result, there are now 2-3 
hours of training material developed and available for forecasters. 
 
4.4 Theses, Papers, and Presentations 
The following formal papers have resulted from this CSTAR effort and support. Much effort was 
done this past 6 months working on papers in preparation given the Ph.D. thesis by Minghua 
Zheng. 
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Formal papers: 
 
Zheng, M., Chang, E.K., Colle, B. A., Luo, Y., & Zhu, Y., 2017: Applying fuzzy clustering to 
multi-model ensembles for validation and scenario identification of U.S. East Coast winter 
storms. Wea. Forecasting, 32, 881-903. 
 
Korfe, N.G., and B.A. Colle, 2017: Evaluation of cool season extratropical cyclones in a multi-
model ensemble for eastern North America and the western Atlantic Ocean. In press to Wea. 
Forecasting. 
 
Zheng, M., Chang, E.K., Colle, B. A., Luo, Y., & Zhu, Y., 2017: Using EOF and fuzzy 
clustering methods to evaluate U.S. East Coast winter storms in multi-model ensembles. In 
preparation for Wea. Forecasting. 
 
Zheng, M., Chang, E.K., & Colle, B. A., 2017: Impacts of upper level Rossby wave packets on 
medium-range forecast errors and uncertainties. In preparation. 
 
Zheng, et al, 2017: Ensemble sensitivity of U.S. East Coast winter storms: the multi-model 
climatology and paths of forecast uncertainty in medium range. In preparation. 
 
Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2016: Rossby wave packets on the mid-
latitude Rossby waveguide -- a review. In press to Monthly Weather Review. 
 
Other published papers: 
Layer, M. and B. A. Colle, 2015: Climatology and ensemble prediction of non-convective high 

wind events in the New York City Metropolitan Region. Wea. Forecasting, 30, 270-294. 

Picca, J.C., D.M. Schultz, B. A. Colle, S. Ganetis, D.R. Novak, and M. Sienkiewicz, 2014: The 
value of dual-polarization radar in diagnosing the complex microphysical evolution of an 
intense snowband. Bull. Meteor. Soc., 95, 1825-1834. 

The Picca et al. (2014) paper was the cover story for the December 2014 BAMS: 
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It was also highlighted on the AMS Front Page Blog: http://blog.ametsoc.org/news/dual-pol-
radar-shedding-light-on-wintry-mix/. 

Souders, M.B., B. A. Colle, E. K.-M., Chang, 2014: A description and evaluation of an 
automated approach for feature-based tracking of  Rossby wave packets.  Mon. Wea. 
Rev., 142, 3505-3527. 

Souders, M.B., B. A. Colle, E. K.-M., Chang, 2014: The climatology and characteristics of 
Rossby wave packets using a feature-based tracking technique. Mon. Wea. Rev., 142, 
3528-3548. 

Zheng, M., K. Chang, and B.A. Colle, 2013: Ensemble sensitivity tools for assessing 
extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 1133–1156. 

Colle, B. A., K. A. Lombardo, J. Tongue, W. Goodman, and N. Vaz, 2012: Tornadoes in the 
New York Metropolitan Region: Climatology and multiscale analysis of two events. 
Wea. Forecasting, 27, 1326-1348. 

Chang, K. M., Zheng, M., and K. Raeder, 2012. Medium-Range Ensemble Sensitivity Analysis 
of Two Extreme Pacific Extratropical Cyclones. Mon. Wea. Rev., 141, 211-231. 

Novak, D. and B. A. Colle, 2012:  Diagnosing snowband predictability using a multi-model 
ensemble system. Wea. Forecasting, 27, 565-585. 

Colle, B. A., and M. E. Charles, 2011: Spatial distribution and evolution of extratropical cyclone 
errors over North America and adjacent oceans in the NCEP Global Forecast System 
model. Wea. Forecasting, 26, 129-149. 

Novak, D., and B. A. Colle, 2010: Climatology and composite analysis of mesoscale 
precipitation band formation in the comma head of mid-latitude cyclones., Mon. Wea. 
Rev. 138, 2354-2374. 

The following CSTAR-related presentations in the past 12 months: 
Brian Colle: “Evaluation of Cool-Season Extratropical Cyclones in a Multi-Model Ensemble for 

Eastern North America and the Western Atlantic Ocean” NCEP Ensemble Workshop 
June 2016. 

Nathan Korfe and Brian Colle: “Evaluation of Cool-Season Extratropical Cyclones in a Multi-
Model Ensemble for Eastern North America and the Western Atlantic Ocean” Model 
Evaluation Group (MEG) Seminar. At EMC, 22 January 2016. 

Brian Colle: “Evaluation of Cool-Season Extratropical Cyclones in a Multi-Model Ensemble for 
Eastern North America and the Western Atlantic Ocean” Northeast Storms Conference, 
Saratoga Springs, NY 5 March 2016. 

Nathan Korfe: “Evaluation of Cool-Season Extratropical Cyclones in a Multi-Model Ensemble 
for Eastern North America and the Western Atlantic Ocean”, 23rd Conference on 
Numerical Weather Prediction, Chicago, IL. 29 June to 2 July 2015. 
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Brian Colle: “Stony Brook Fuzzying Clustering Tool”, NROWXV, Albany, NY. 4-5 November 
2015. 

Brian Colle: “Orographic Precipitation” Invited Presentation at COMET Winter Weather Class, 
Boulder, CO. January 2016. 

Taylor Mandelbaum: “Development of the Ensemble Spread Anomaly Tool”, NROWXV, 
Albany, NY. 4-5 November 2015. 

Taylor Mandelbaum: “Ensemble Spread Anomaly Tool for East Coast Winter Storms” Northeast 
Storms Conference, Saratoga Springs, NY 5 March 2016. 

 
Stony Brook CSTAR graduates (alum)/students: 
David Stark (M.S., 2012) – NWS General Forecaster at Upton, NY 
Matthew Souders (M.S., 2013) –Weather Analytics, New Hampshire 
Michael Layer (M.S., 2014) – Weatherworks, Hackettstown, NJ 
Michael Erickson (Ph.D., 2015) – NOAA Contractor (Weather Prediction Center) 
Minghua Zheng (Ph.D. -2016, starting post-doc at Scripps in January 2017) 
Nathan Korfe (M.S. 2016 – Research Meteorologist at WindLogics, MN) 
Taylor Mandelbaum -- current M.S. CSTAR student (will graduate May 2018) 
Ryan Connelly -- current M.S. CSTAR student (will graduate May 2018) 
 
4.5 CSTAR Group Meetings and List Serve 
The Stony Brook List serve was active during 2016 hurricane season during Hermine and 
Matthew. There are over 50 participants on the list serve: 
cstar_stony_brook@infolist.nws.noaa.gov. 
 


