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1. Background 

 

Our project addressed CSTAR objectives to: “Improving the lead-time and accuracy of forecasts 

and warnings for high impact weather -- Improving the use of ensemble predictions systems in 

order to enable more effective forecaster assessment of uncertainty”; “Improving Impact-Based 

Decision Support Services”; and “Improving water resource information (precipitation) for 

decision support and situational awareness” Our focus area is the Eastern U.S. for high impact 

weather during the cool season; however, our approach can be expanded to other parts of the 

country and phenomena. The primary goals are: (1) To extend our newly developed fuzzy 

clustering approach to high impact weather events including precipitation, freezing level (2-m 

temperature), and 10-m wind for days 1-7 using the short-range and global ensembles; (2) Expand 

our new spread-anomaly ensemble tool; (3) Use these tools to verify these phenomena in the 

ensembles and understand the large-scale flows attached to the less predictable events; and (4) 

Integrate the Alan Alda Center for Communicating Science (www.aldacenter.org) into our CSTAR 

to help forecasters better communicate probabilistic information through a series of three  

workshops, some of which involving stakeholders.  

 

2. Scientific Objectives and Accomplishments 

 

a. Fuzzy-Clustering Tool Development 

 

The CSTAR student has been expanding the fuzzy clustering tool to include other variables and 

approaches. The existing version online 

(http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/FC_Main.html) focuses the 

clusters around sea level pressure. A goal of this project was to develop the clustering around other 

variables using the global ensembles (GEFS, CMC, and EC – 90 members).  

 

During winter storms one serious concern of forecasters is whether the precipitation will fall as 

snow, rain, or mixed phase. One useful guidance is the location of the zero degree Celsius contour 

within the planetary boundary layer, such as at 925 hPa level. Proximity to this line may indicate 

the transition region between snow and rain. We have experimented with a new clustering tool to 

highlight the uncertainty of this location. Clustering based on the 925 hPa temperature (T925) 

directly is not expected to highlight this region, since temperature variability can be large over 

regions with temperature far from freezing, and using temperature directly mainly highlights those 

regions with the largest temperature variability that are not necessarily close to the freezing 

contour. Instead, the zero degree contour is highlighted by a novel transformation, as follows: For 

each ensemble member, grid boxes where T925 is above freezing is assigned a value of 1, while 

grid boxes where T925 is below freezing is assigned a value of 0. For any forecast ensemble 

member (or the analysis), the entire field will be either 0 or 1. However, when averaging the entir e 

forecast ensemble, regions where all ensemble members have temperature above 0 will show an 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/FC_Main.html
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ensemble mean of 1, while regions where all members have below freezing temperature will have 

a mean of 0. Over regions where some of the members have above freezing temperature and some 

below, the ensemble average is between 0 and 1, and corresponds to the fraction of ensemble 

members that have temperature above freezing.  

 

To illustrate this new approach, we applied it to a winter storm that impacted the US Northeast 

coastal area on 15 November 2018. This storm brought several inches of snow to the tri-state area, 

and generated evening rush-hour traffic gridlock over New Jersey and New York due to more 

widespread snow accumulation than expected during the evening commute. Here, we examine the 

1.5-day ensemble forecast valid at 0000 UTC 16 November 2018. The ensemble consists of 50-

member ECMWF ensemble, 20-member NCEP GEFS ensemble, and 20-member CMC ensemble, 

with a total of 90 ensemble members. Figure 1a shows the ensemble mean and spread of T925. 

The ensemble-mean zero degree contour extends from just south of Long Island west-

southwestward towards central New Jersey into southern Pennsylvania, and then southwestward 

into Maryland and Virginia. The shades in the figure shows the ensemble spread. Clearly, the 

largest spread occurs south of the zero degree ensemble mean contour. Thus by examining the 

ensemble mean and spread of T925, it is not clear how much uncertainty there is in the location of 

the zero degree contour, with the largest uncertainties highlighted over regions where T925 is well 

above freezing. 

 

The situation is very different after our transformation is applied. The ensemble mean and spread 

of the transformed T925 field is shown in Fig. 1b. The ensemble spread (shades) now highlights 

the region around the ensemble mean zero degree contour, which is very close to the location 

where the ensemble mean of the transformed field has a value of 0.5. As expected, the ensemble 

spread is basically bounded by the ensemble mean contours of 0.01 and 0.99. North of the 0.01 

contour, all members have below freezing temperature, while south of the 0.99 contour, all 

members have above freezing temperature. In between, some members forecast above freezing 

while others forecast below freezing, thus highlighting a region of potential transition between rain 

and snow. Figure 1b shows that even 1.5-day prior to the event, there is still significant uncertainty 

in the location of the zero degree contour, with the full ensemble indicating an uncertainty of 

around 150 km in its location. Such large uncertainties are not clear from the inspection of T925 

directly (Fig. 1a). 
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Figure 1. Left (a) Contours: Ensemble mean T925 (in oC) valid at 00Z 16 November 2018; 

Shades: Ensemble spread. Right (b) Shades Ensemble spread of transformed T925 (see 

discussions in text). Black contours: Ensemble mean of transformed T925 at values of 0.01, 0.50, 

and 0.99. The ensemble mean zero degree contour is also shown. The zero degree contour from 

the analysis is shown as the magenta line. 

 

The zero degree contour from the analysis is plotted as the magenta line on Fig. 1b. Over most 

regions it lies south of the ensemble mean zero degree contour, indicating colder temperature than 

predicted by the ensemble mean. Nevertheless, Fig. 1b shows that the analysis lies within the 

ensemble and is not out of ensemble. Over southern New Jersey, northern Delaware and 

northeastern Maryland, the analysis lies close to the edge of the ensemble, but close to or below 

freezing temperature over these regions should not have been unexpected if the full ensemble is 

considered, since the analysis does lie within the full ensemble. 

 

Clustering is performed using the two leading EOFs of the transformed T925 field. The leading 

EOFs are shown in Fig. 2. Positive EOF1 (Fig. 2a) shows negative values on both sides of the 

ensemble mean zero degree contour, indicating colder temperature over those regions, translating 

to a more southward location of the zero degree contour. Positive EOF2 (Fig. 2b) shows negative 

values to the southwest and positive values to the northeast, suggesting colder T925 over Virginia 

and warmer to the east of Long Island, or a slight counter-clockwise rotation of the zero degree 
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contour. Clustering is performed using the two PCs, and the results of the clustering is shown in 

Fig. 3a. 

 
Figure 2. Left (a) Leading EOF of transformed T925. Right (b) Second leading EOF. 

 

Figure 3a shows that all members with large negative PC2 (corresponding to more northward 

location of the zero degree contour) are from CMC, and this ensemble clearly has a warm bias for 

this case. Note that the analysis projected onto PC1 and PC2 is shown as the magenta cross on Fig. 

3a. The analysis has positive PC1, indicating a more southward location of the zero degree contour 

than the ensemble mean as discussed above. Nevertheless, Fig. 3a shows that the analysis is located 

inside the full ensemble in PC1-PC2 space, consistent with the discussions above. The group mean 

zero degree contours for the five groups are shown in Fig. 3b. This also highlights the large spread 

in the predicted location of the zero degree contour. While none of the groups shows as far south 

a location as the analysis (yellow) over southern New Jersey and northern Delaware, the large 

spread displayed by the five groups as well as the spread shown in Figure 1b would serve as 

indicators that there is significant uncertainty in the location of the T925 zero degree contour. 

 

One complication that we encountered relates to the fact that the main interest in the location of 

the zero degree contour lies over regions with significant precipitation. That is the reason why we 

restricted the analysis to the region shown in the figures. We have experimented with larger 

domains, but since the zero degree contour extends into regions without precipitation, the leading 
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EOFs could be dominated by variability over those regions and thus become less useful. This is 

different from clustering based on MSLP or precipitation, in which the variance is always 

dominated by regions around cyclones and thus areas with large variance are always of interest. 

More testing and fine-tuning will be needed to perfect this tool. We are currently coding up a new 

package to be run daily at EMC by our NCEP/EMC CSTAR collaborators, with the results to be 

posted on a new web page (password protected due to inclusion of ECMWF data) on the Stony 

Brook CSTAR site, to further test and evaluate this tool. We will also examine historical cases 

from the TIGGE archive and use this tool as a verification tool to evaluate the performance of the 

90-member ensemble using the methodology described in Zheng et al. (2017). 

 
Figure 3. a) Projection of each ensemble member (filled colored symbols), group means from 

clustering analysis (X), and the analysis (magenta +) onto PC1-PC2 space. Red symbols 

indicate CMC members, green NCEP GEFS, and blue ECMWF. b) Zero degree contours from 

the 5 groups, together with that from the analysis (yellow). 

 

b. Evaluation of Clustering Approaches 

The current operational cluster approach uses a fuzzy clustering method (Zheng et al. 2017; 

2019; hereafter ZH1 and ZH2 respectively), in which a Principal Component Analysis (PCA) 

assesses the modes of variability of each member to cluster. PCA describes creation of an 

orthogonal basis, or a rotation of axis, where the first vector (PC1) is oriented along the direction 

of greatest variance, and vectors thereafter along the next greatest variances (PC2, PC3… etc.). 
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For extratropical cyclones along the U.S. East Coast with MSLP, PC1 generally represents a 

spatial displacement, while PC2 represents variability in intensity (ZH2).  

 

This project explored different clustering approaches using the 90-member ensemble of GEFS, 

CMC, and ECMWF for U.S. East coast and western Atlantic regions. The details are in a paper 

in revision (Kiel and Colle 2022), while some highlights are shown below. The dataset included 

180 winter cyclones from 2007 to 2015, defined by minimum pressure less than 1005 hPa in the 

GFS Analysis. The 12-h MSLP and accumulated precipitation for the ensembles was obtained 

from the Observing System Research and Predictability Experiment’s Interactive Grand Global 

Ensemble (TIGGE) archives. For the precipitation, the ERA5 data were obtained from the 

Copernicus Climate Data Store (Hersbach et. al. 2019). ERA5 is chosen due its availability of 

precipitation in 1-h accumulation, and it has shown consistency with historic observations in the 

Northeastern U.S. (Crosett et. al. 2020) All data are bilinearly interpolated to a 1° by 1° grid.    

 

Several clustering spaces and methods have been used in atmospheric sciences, includ ing 

hierarchical based approaches (ie, Agglomerative Hierarchical Clustering; Ferstl 2001), density 

based approaches (ie, Density Based Spatial Clustering With Noise; Li et. al. 2008), and centroid 

based approaches (ie, K-Means Clustering; Yesibudak 2016, Fuzzy Clustering; ZH1). They are 

summarized in Tables 1 and 2 and also in some detail here: 

● Agglomerative Hierarchical Clustering (AHC): The closest pair of points are clustered 

together, and the mean of those points are taken to be a new point which represents a 

cluster. This is repeated iteratively until the desired number of clusters is reached.  Ferstl 

(2001) used AHC on height contours to consolidate spread and forecast dynamics onto a 

single visual.  

● K-Means Clustering (KMC): Clustering method where each point is assigned to the nearest 

mean cluster center where within cluster distances are minimized.  Yesibudak (2016) used 

(KMC), to cluster wind vectors to find wind pattern similarities of efficient and ineffic ient 

wind farms in Turkey.  

● Density-based Spatial Clustering with Noise (DBSCAN):  Density-Based Spatial 

Clustering With Noise: A clustering method which identifies regions of high density by 

examining weather points fall within a certain fixed radius of each other. Li et al. (2008) 

used DBSCAN in a novel data-mining algorithm used to detect thunderstorm 

mesocyclones in real-time.   

● Fuzzy Clustering (FC): Ensemble members are assigned weights based on strength of 

membership to a cluster depending on PC space distance from cluster mean. The cluster 

with the largest weight represents that ensemble member.  Zheng et al. (2017) (Hereafter 

ZH1) and ZH2 used fuzzy clustering to generate scenarios from model ensembles.  

 

Each clustering approach comes with its own pros and cons. DBSCAN has the ability to exclude 

outliers, preventing them from significant modification of a discrete group of points. However, 
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careful choosing of radius is important, as too small of a radius may result in over exclusion or 

even no points clustered, and too large a radius leads to a single cluster encompassing all points. 

FC’s computational complexity allows for more robust clustering, but it is possible that such 

complexity isn’t needed. Further, methodologies using FC usually assign a point to the cluster that 

is most probable to belong to, but could disregard important information about significant 

probability that the point belongs to another cluster. AHC and KMC provide simpler alternatives, 

however, both, along with FC, attempt to include all points in clusters - possibly when it is not 

warranted. 

 

Table 1: A description of all clusterable spaces tested.  

Two Principal 
Components (2PC) 

Clustered by the unweighted first two principal components of 
the EOF analysis of the dataset only. 

Weighted Principal 
Components (WPC) 

Clustered by the n principle components  of the EOF analysis of 
the dataset representing 90% of and weighted by the variance 

explained. 

Magnitude -
Displacement 

(MDISP) 

Clustered by a 3D space, one dimension representing the 
magnitude of the minimum pressure, the other two dimensions 

the displacement of the minimum pressure from the analysis 
scenario minimum pressure. 

Euclidean 
Clustered by applying ensemble members into the clustering 

algorithms directly. 

SOM – Principal 
Component (SOM) 

Ensembles members are not clustered directly. Rather, the 
clusters are fitted to a 6x6 node map, which acts a linearization 

step. The nodes are then clustred by their Principal Components. 
 
 

Table 2: A description of clustering methods used for each clusterable space tested. 

Euclidean distance was used for all clustering algorithms. 

Agglomerative Heirarichal 
Clustering – Ward’s Linkage 

(AHC)  

All agglorerative clustering is done by grouping points 
together one by one iteravely, based on a linkage metric. 

Ward’s Linkage minimizes the intracluster variance 
between points. 

Agglomerative Heirarichal 
Clustering – Full Linkage 

(AHF) 

Clusters linked by the distance of the point furthest away 
from each other within each group. 

Agglomerative Heirarichal 
Clustering – Average Linakge 

(AHA) 

Clusters linked by the average distance between points 
between each group. 

K-Means Clustering (KMC) 
Initial groups are assigned, then iterations are preformed 
using an algorithm to minimize variance between points. 

Fuzzy Clustering (FZC) 
Like k-means, but instead assigns probability of each 

point to belong to each cluster on each iteration. 
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1. APCP Scenario Nearest Analysis Results 

We compared how close each 12-h APCP cluster is to the precipitation analysis. This is done for 

(1) the magnitude of displacement error and its north/south and east/west components, (2) intens ity 

and magnitude of intensity error, and (3) brier skill score (BSS) by threshold.  

 

APCP displacement error (Fig. 4) is calculated through finding the weighted mean latitude and 

longitude of all grid points, using precipitation as the weight. We break this down into north/south 

(Fig. 5) and east/west components (Fig. 6). Component results were subtracted in the same way as 

MSLP, so a positive error indicates northward or westward bias from NCEP analysis in the 

ensemble or scenario mean, and a negative error a southward or eastward bias from NCEP analysis 

in the ensemble mean. We found that using weighted mean for the full multi-model ensemble mean 

becomes problematic at later lead times. As precipitation forecasts become increasingly dispersed, 

ensemble mean APCP becomes uniform, especially at later lead times (Fig. 7). Therefore, the 

center of mass location of the ensemble mean becomes less representative of precipitation errors 

and more representative of the center of the region. Figure 7f shows that 70% of cyclones are 

located to the south and 70% to the west of region’s center. This translates into a northward bias 

of 20 km and 60 km as well as the eastward bias of 14 km and 114 km for the medium (days 4-6) 

and long lead (days 7-9) times, respectively. But this ensemble mean result is likely artifacts of 

region boundary choice. However, the scenario nearest analysis is resilient to this issue, most 

notably that the westward bias of around 27 km and 71 km for medium and long lead times, which 

contrasts to the eastward bias of the ensemble mean. This affirms that clustering 12 h APCP into 

scenarios is sufficiently effective to preserve sets of similar APCP fields, if they exist. 

 

We also repeated using 12 h APCP the results for the scenario nearest analysis percentage error 

minimums of the magnitude of displacement error for each clustering algorithm (Table 3a), using 

the average between clustering spaces, and for clustering spaces (Table 3b), using the average 

between clustering algorithms. There exists sensitivity of the clustering algorithm results to lead 

time (e.g., k-means clustering has minimum displacement error for 10%, 19%, and 16% of the 

time at short (days 1-3), medium, and long lead times, respectively, indicating that the error are 

likely small, but there may be some evidence that SOM performs better than other clustering 

algorithms, having minimum value of displacement error 23%, 20% and 24% of the time for short, 

medium, and long lead times, respectively. And while IDISP is determined differently for 12 h 

APCP than MSLP, its scenario nearest analysis still performs most strongly, for example, for short 

lead time, the scenario nearest analysis has the minimum value of displacement error 42% of the 

time, well above the next highest, Euclidean, which has minimum value of displacement error 25% 

of time for short lead time. 

 

Intensity error (Fig. 8) and its magnitude (Fig. 9) are calculated by finding the 10 most intense 

precipitation points in each ensemble member, averaging them, and comparing the average to the 
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average of the 10 most intense precipitation points in the analysis. APCP intensity errors are 

calculated as scenario minus observed, so a positive value of intensity error indicates a systematic 

overestimation of APCP intensity, and a negative value a systematic underestimation of APCP 

intensity. The ensemble mean shows a systematic overestimation at 95% confidence for medium 

and long lead times of 1.6 mm and 4.7 mm respectively. Scenarios nearest analysis for 2PC and 

WPC give a 95% significant overestimation for long lead time at around 2.3 mm. IDISP has a 

lower overestimation at a long lead time of 1.2 mm. Euclidean space has a slightly higher 

estimation at a long lead time of 3.1 mm. For magnitude of intensity error (Fig                                                                                               

9), we find that 2PC and IDISP have a marginal improvement over ensemble mean at long lead 

times from about 7.7 mm to 6.3 mm, but in general results between the ensemble mean and the 

scenarios do not change with significance for magnitude of intensity error. 

 

We may also find the percentage of times a scenario nearest analysis produces an intensity error 

minimum for 12 h APCP, for clustering algorithms (Table 4a), using the average between 

clustering spaces, and for clustering spaces for analysis (Table 4b), using the average between 

cluster algorithms. Sensitivity from lead time to lead time for clustering algorithms indicates that 

error differences between them are once again small on a case-by-case basis, and it isn’t clear 

whether any algorithm or space gives a more frequent occurrence of an intensity error minimum. 

 

For BSS by threshold using GEFS control as reference, we compared the results of using 0, 5, 10, 

and 15 mm thresholds for scenario nearest analysis in 2PC space (Fig. 10), and only the 10 mm 

threshold results are shown for clustering approach closest to the analysis (Fig.11). BSS decreases 

when increasing the threshold value for medium and long lead times, for example, at long lead 

time, the average 2PC BSS value for a scenario nearest analysis was 0.58 for 0 mm threshold, 0.57 

for 5 mm threshold, 0.51 for 10 mm threshold, and 0.44 for 15 mm threshold (not shown). BSS by 

threshold also decreased with lead time, for example, for a 10 mm threshold the BSS threshold on 

average for any scenario nearest analysis in 2PC was 0.76, 0.62, and 0.51 for short, medium, and 

long lead times respectively. While this is a slight improvement on ensemble mean (0.67, 0.52, 

0.44, for short, medium, and long lead time, respectively), there are no significant variations in 

behaviors of BSS by threshold for any different clustering technique (Fig. 10). For example, the 

10 mm threshold values as reported above for 2PC did not change from clustering space to 

clustering space. Likewise, use of a different control member did not change these behaviors either  

(not shown).   

 

2. Brier Skill Score and Weighted Indexing 

We repeat the predictive skill evaluation of the scenario nearest analysis done in the last section, 

using APCP, by testing (1) BSS by cluster number and (2) a weighted indexing of the scenario 

nearest analysis.  

 



11 
 

We now evaluate results of BSS by cluster number for 12 h APCP as was done with MSLP, first 

unweighted (Fig. 12), weighting by the size of the largest cluster (Fig 13), and then weighting by 

the square of the largest cluster (Fig 14). After weighting by the square of the largest cluster (Fig 

11b), we note that fuzzy clustering and SOM have lower BSS by cluster values than other 

clustering algorithms at short and medium lead times, for example, in WPC space, SOM has values 

of 0.01 and -0.01 and fuzzy clustering has values of -0.01 and -0.01 at short and medium lead 

times, respectively, lower than k-means or any AHC clustering algorithm (the average of them is 

0.17 and 0.08 at short and medium lead times). Euclidean space shows greater spread between lead 

time values than any other clustering space. For example, Euclidean k-means has values of 0.29, 

0.12, and 0.01 at short, medium and long lead times, respectively, whereas 2PC space has values 

of 0.11, 0.02, and -0.07, at short, medium, and long lead times respectively. 

 

The index distribution was calculated for 12 h APCP (not shown), and the index distribution 

weighted by the average number of members in each index (not shown)). From comparing the 

weighted index distribution to the weighted index distribution, it is implied that the size of the 

largest cluster (index 1), is very large on average for Euclidean space, excluding SOM. Verifying 

this, we find that, for short lead times, index 1 contains on average 35% of members for Euclidan 

AHC Ward’s linkage, 48% of members for Euclidan AHC full linkage, 44% of members for 

Euclidean fuzzy clusters, and 31% of members for K-means clustering. AHC average linkage also 

gives high cluster percentages in the first index, including in 2PC space (48% at short lead time), 

IDISP space (66% at short lead time) and WPC (56% at short lead time). This is evidence that not 

only does AHC average linkage still have outlier sensitivity, but Euclidean space also has similar 

difficulties in generating clusters. In fact, attempting to cluster in the Euclidean space using AHC 

average linkage results in on average 76% of members in cluster 1, which is evidence that this 

method shows extreme outlier sensitivity and almost always fails to generate rigorous clusters.  

 

The outlier removal tendency of Euclidean space and average linkage related clustering techniques 

helps explain their weighted index values usually being above the random selection threshold of 

20% for short lead times (e.g., 35% for Euclidean AHC Ward’s linkage) at short lead times. Outlier 

removal means that the index cluster is the scenario nearest analysis more than the average number 

of clusters would indicate for Euclidean space and average linkage related clustering techniques 

at short lead times.  

 

12 h APCP at long lead times, like with MSLP, gives the inverted distribution result where index 

1 is less likely and index 5 more likely to represent the scenario nearest analysis than the numb er 

of members within them would suggest. [e.g.: weighted index results of 2PC SOM 1: 9% 2: 

14%  3: 20% 4: 27%  5: 29%]. The behavior is more common with 12 h APCP than with MSLP, 

with cluster index 1 being less likely to represent the scenario nearest analysis then suggested by 

its number of members for every technique tested. Caution would need to be applied to interpreting 

clusters at long lead times, especially when clustering via 12 h APCP 
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a.) 2PC Space  b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

Figure 4: 12 h APCP Mean magnitude of displacement error for scenario closest to analysis and 

divided by short (blue) medium (green) and long (red) lead times. Plots are separated by space 
to cluster by, with a) 2PC Space, b) Euclidean Space, c) IDISP space, and d) WPC space. Also 
plotted are the 95% bootstrapped confidence intervals. Each is compared to the full ensemble 

mean.  
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a.) 2PC Space  b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 5: As in figure 4, but for 12 h APCP N/S component of displacement error 
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a.) 2PC Space  b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 6: As in figure 4, but for 12 h APCP E/W component of displacement error. 

  



15 
 

a.) Three day lead time  b.) Five day lead time 

  

a.) Seven day lead time a.) Eight day lead time 

  

a.) Nine day lead time f)  

  

 

Fig 7. Plots showing 12 h APCP (solid every 2mm) ensemble means and their center of mass at 
a.) IT: 0000 UTC 27December 2012, b.) IT: 0000 UTC 25 December 2012, c.) IT: 0000 UTC 23 

December 2012, d.) IT: 0000 UTC 22 December 2012, e.) IT: 0000 UTC 21 December 2012. 
VT: 0000 UTC 30 December 201.  
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a.) 2PC Space  b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 8: As in figure 4, but for 12 h APCP Intensity Error.  
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a.) 2PC Space b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 9: As in figure 4, but for 12 h APCP Magnitude of Intensity Error. 
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a.) 0 mm Threshold b.) 5 mm Threshold 

  

c.) 10 mm Threshold d.) 15 mm Threshold 

  

 
Fig 10: As in figure 4, but 2PC space comparisons of mean BSS by threshold of scenario nearest 
analysis using GEFS control as reference at thresholds of a.) 0 mm, b.) 5 mm, c.) 10 mm, d.) 15 
mm.  
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a.) 2PC Space b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 11: As in figure 4, but for mean BSS by threshold of scenario nearest analysis using 10 mm 
threshold and GEFS control as reference. 
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a.) 2PC Space b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 12: As in figure 4, but for mean BSS by cluster number.  
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a.) 2PC Space b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig. 13: As in figure 12 but weighting each BSS by the size of the largest cluster. Note that the y-

axis range has been reduced to better represent the dataset. 
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a.) 2PC Space b.) Euclidean Space 

  

c.) IDISP Space d.) WPC Space 

  

 
Fig 14: As in figure 12 but weighting each BSS by the square of the largest cluster prior to 
averaging.  
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Table 3: Percent of times a method produces a cluster with the minimum displacement 
error for 12-h APCP for a) clustering algorithm and b) clustering space, divided by lead 
time. Also included is the normal approximation to the binomial confidence interval for 
these results. 

a. clustering algorithm 

Algorithm Short Lead Time Medium Lead Time Long Lead Time 

K-means  10%±4 19%±5 16%±5 

AHC: Avg 10%±4 14%±5 15%±5 

AHC: Full  16%±5 14%±5 18%±5 

AHC: Ward 19%±5 14%±5 13%±5 

Fuzzy 22%±5 18%±5 13%±5 

SOM 23%±5 20%±5 24%±6 

b) clustering space 

Space Short Lead Time Medium Lead Time Long Lead Time 
2PC 18%±5 19%±5 19%±6 

Euclidean 25%±5 25%±6 23%±6 

IDISP 42%±6 33%±6 44%±7 

WPC 15%±4 22%±6 14%±5 

 
Table 4: Percent of times a method produces a cluster with the minimum error in 12-h 
APCP intensity. 
 

a. clustering algorithm 

Algorithm Short Lead Time Medium Lead Time Long Lead Time 

K-means  15%±5 13%±5 16%±5 

AHC: Avg 14%±4 15%±5 15%±5 

AHC: Full  12%±4 19%±5 21%±6 

AHC: Ward 18%±5 18%±5 13%±5 

Fuzzy 21%±5 16%±5 21%±6 

SOM 20%±5 19%±5 14%±5 

b) clustering space 

Space Short Lead Time Medium Lead Time Long Lead Time 

2PC 21%±5 22%±6 21%±6 

Euclidean 23%±5 21%±5 25%±6 

IDISP 29%±6 36%±6 33%±7 

WPC 27%±6 21%±5 21%±6 

 
 

b. Communication Uncertainty Workshop #1 

 

The summary of both communication workshops are in Colle et al. (2021). The first CSTAR 

Communication Workshop was held from 4-5 March 2019, involving 14 forecasters from NWS 

Eastern Region, Northeast River Forecast Center, and Weather Prediction Center.  Table 5 

highlights the agenda of the meeting. The workshop began with welcomes and a discussion of the 

communication challenges for forecasting. The forecasters discussed some recent challenging 

forecast events as part of the homework assignment. The activities the rest of the day focused on 

how to better distill a message and communicate things in a more concise way. For example, one 
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exercise focused on communicating anything to do with weather in 1-minute, then the time allowed 

was reduced to 30 seconds, 15 seconds, and then 7 seconds. This forced participates to focus on 

the most important parts of their message.  

During day2 participates gave 3-minute weather briefings using just 1-2 slides and the information 

they were taught in day1. The Alan Alda staff provided constructive feedback on their 

presentations and slides. Common issues were putting too much information or too many weather 

hazards on a slide, such that the message was lost. The oral presentation should also have a sense 

of urgency and clear statements of why it is important to the user. Figure 15 shows a few photos 

from the event. The “Recent Interactions” section below has the evaluations from the workshop 

and comments from the forecasters.  

 

Table 5. 4-5 March 2019 workshop agenda. 

DAY 1 

8:30-9:00am   Check-in & Registration 

    All participants: Endeavor 120 
 

9:00-10:00am   Welcome to the Alda Center’s Science Communication 
Workshop 

- Communication challenges for forecasting, messaging 

probabilistic information, and communication with various 
audiences 

- The science of science communication 
- Examples of recent events 
All participants: Endeavor 120  

 

   10:00am-12:30pm  See and Be Seen  
Improvisation-based activities to help you focus on and 
connect with your audience. 

All participants: Endeavor 120  
 

12:30-1:30pm  Lunch 

1:30-2:00pm   Designing a Vivid Message Part I 

All participants: Endeavor 
 

2:00-3:00   Designing a Vivid Message Part II 
Group A: Okubo 
Group B: EN 113 
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3:00-3:15pm     Break  

   3:15-5:15pm   Just a Minute (JAM) Session (Groups of 8) 

    Practice talking about your work in clear, vivid and concise ways. 

Group A: Okubo 

Group B: EN 113 
 

5:15-5:30pm   Reflection Routine & Wrap Up 
All participants: Room  
 

DAY 2 

9:00-10:00am    Talking to Challenging Audience and Listening 

    All participants: Endeavor 120 
 

10:00-12:45pm  Practice 3-minute Briefings  

Participants will practice and receive feedback presenting on a 

hazardous weather event 

    12:45-1:00pm  Celebrating the Journey 
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Figure 15. Photos from the 4-5 March Communication Workshop. 

 

c. Communication Uncertainty Workshop #2 

 

The second CSTAR Communication Workshop was held from 14-15 November 2019, involving 

15 forecasters from NWS Eastern Region, Northeast River Forecast Center, and Weather 

Prediction Center.  This workshop built on the ideas learned from workshop #1, so nearly all 

forecasters from the first workshop attended this second one. The first workshop emphasized 

distilling the message and communication skills through a series of exercises by the Alan Alda 

Center. The second workshop (also led by Alan Alda Center) focused on distilling the message for 

a major weather event to various stakeholders (e.g., emergency managers, media, etc.). As 

homework forecasters were required to bring a 1-page powerpoint slide communicating the 

forecast and hazard for an extreme weather event to an assigned stakeholder (emergency manager, 

department of transportation, and media). Table 6 gives the homework assignment. They arrived 

with version 1 of this slide (e.g, Fig. 16). After day1 of the workshop the participants were asked 

to make version2 given what they learned in class. Then after interacting with the stakeholders on 

the 2nd day of the workshop the participants were asked to make  final version3. This allows us to 

track the modifications as they experienced the workshop from start to finish.  

 

Table 7 highlights the agenda of the meeting and Figure 17 shows some photos. During the 

morning of day1 we reviewed what the participants learned from the first workshop (e.g., what 

stuck), and how they have applied some of the techniques back in the office and communicated 

this information to other staff. Then there were some Improvisation-based activities to help focus 
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on and connect with the audience. The afternoon focused on how to match the message to the 

audience and how to do it in a shorter and shorter time period. We also rehearsed the weather 

briefing presentations to the stakeholders for day2, both the verbal (non-powerpoint) and 

powerpoint slide presentation. During day 2 the stakeholders were present from Nassau County 

Office of Emergency Management, New York City Emergency Management, Suffolk 

County Fire, Rescue and Emergency Services, NYS DOT LI Region, News 12 Long Island. There 

were some warm-up exercises with the stakeholders, and then we did the “circuit exercise,” in 

which the forecasters in groups went to various rooms for 45 min to give the presentations to the 

stakeholders. The stakeholders asked questions and provided feedback. 

 

Table 6: Homework assignment to the forecasters before the workshop 

 

The focus of workshop no. 2 is Matching the Message to the Audience. Assignment 1 will 

provide the information for our exercises on day 1 (Thursday) and the interactions with 

stakeholders/partners on the morning of day 2 (Friday).  

Assignment 1 

Consider a previous high-impact winter weather event that your forecast office worked. This event 

will be the basis of your preparation on Thursday for providing a briefing Friday morning to a 

representative of an emergency management agency, Dept. of transportation, and media. Think 

about the key points your partner would need to know, including the inherent uncertainties and 

possible outcomes of this threatening event. What information has been most important to the 

different types of partners you have briefed in the past? Again, Matching the Message to the 

Audience is the theme for this workshop. No slides or other aids will be used in this briefing. 

Assignment: Part 2 

In this assignment, make a PowerPoint briefing slide to convey your message in about a minute 

and a half or less. We will send you an email shortly about which type of stakeholder to focus 

on.  

 

Table 7. 14-15 November 2019 workshop #2 agenda at Stony Brook University. 

DAY 1 

8:30-9:00am   Check-in & Registration 
All participants: Endeavour 120 

9:00-10:00am   Welcome to the Alda Center’s Science Communication 

Workshop 
- What stuck? 

- Brief review/overview for new participants 
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- How have you used what you learned? 
- What challenges have you faced?  

- Examples of recent events 
- Stakeholder needs 

All participants: Endeavour 120 
 

   10:00am-12:30pm  Improv Refresh  

Improvisation-based activities to help you focus on and 
connect with your audience. Revisit the classics and introduce 

new exercises. 
All participants: Endeavour 120 

 

12:30-1:30pm  Lunch 

1:30-3:00pm   Matching the Message to the Audience  

Revisit JAM Tool 
Tailoring to stakeholder audiences 

Half life talks 

    Rehearsing and refining – Participants practice talks for 

stakeholder audiences 

    Roleplaying – Participants listen and interact as stakeholders 

Feedback from cohort and instructors 

All participants: Endeavour 120 

     
3:30-3:45pm     Break  

   3:45-4:45pm   Visuals 

    Wildcard Talks 

Endeavour 120 

NEED ANOTHER room 

 
4:45-5:00pm   Homework – revise slide 

Reflection Routine & Wrap Up 
All participants: Endeavour 120 

 

DAY2  

 
9:00-9:45am  

Talking to Stakeholders 
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Welcome, Introductions 
Overview of the Alda Method for stakeholders 

Warm up with improv exercises 
Description of circuit training exercise 

All participants: Endeavour 120 

 

9:45-10:00pm    Break 

 
10:00-12:15pm   Weather briefings for Stakeholders 

Endeavour 113 

Endeavour 139 

Endeavour 158 

Dana 100 

 

12:15-12:30pm   Celebrating the Journey 

All participants: Endeavour 113 

 

 

 

 

 

 

 

 

 

 

Figure 16. Sample one-pager used for briefing with stakeholders. 
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Figure 17. Select photos from the 14-15 November Workshop. 
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3.  Interaction with Operational CSTAR Partners 

a. Ensemble Tools 

We have improved our fuzzy cluster tools for operations: 

1. Updated the CSTAR web page to include the 6- and 12-h precipitation clusters as well as the 

925 hPa freezing line clusters. 

2. We implemented the latest code on the EMC machines in order to utilize the NCEP, CMC, 

and EC ensembles (90 total members). After the images are generated at EMC they are ftp’d 

back to Stony Brook to be displayed on a password-protected webpage. 

3. We iterated with EMC on debugging the cluster code to run on their computer. This took a few 

months. 

4. We added a floater domain to each of the cluster variables, which allows the user to select the 

region of interest using a Google map interface.  

WPC implemented our clustering approaches for their 2019-2020 Winter Weather Experiment 

(WWE). An earlier report (January 2019) highlighted some examples from their internal cluster page. 

We have shared the precipitation and 0C cluster codes to hopefully be included in their 2019-2020 

Winter Experiment. 

 

We have maintained the ensemble tools webpage for our partners, which includes the Ensemble 

Sensitivity and Clustering. 

 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/FC_Main.html 

 

b. Communication Uncertainty Workshops 

In 2019 Stony Brook University (SBU), as part of the recent NOAA CSTAR project, and in 

collaboration with the Alda Center, held two 1.5-day workshops on effective forecast 

communication for 14 forecasters from several NWS forecast offices and operational centers.  The 

goal of the Alda Center is to help scientists and other professionals learn how to communicate 

clearly with people outside their field using improvisational theater-based techniques and message 

design strategies. Improvisation techniques have been recognized as a tool for effective 

communication as they can help build empathy and connection with your audience. The Alda 

Center also focuses on message design strategies that communicate complex topics in “clear, vivid, 

and engaging ways.” The Alda Center provides training on message design (both oral and visual) 

through games, exercises, and role-playing scenarios. The first workshop focused on the 

fundamentals of human communication using this unique improvisational approach, thus forcing 

forecasters to get out of their comfort zone. The second workshop focused more on adapting your 

message to the audience and included five different stakeholders in the NYC-Long Island area.  

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html
http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/FC_Main.html
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The two workshops were highly successful, and this work has resulted in a 2021 peer-reviewed 

Colle et al. (2021) paper in the Bulletin of the American Meteorological Society. Said one 

participant, “...When working forecast shifts, particularly during flooding events, I've caught 

myself making assumptions about how users or partners might interpret our forecasts. Due in part 

to the lessons taught at our workshops, I've consciously tried to avoid making those assumptions 

and to actually take the time to communicate with the partners to ensure clarity. This includes 

collaboration with our Weather Forecast Offices, but also core partners, such as the US Army 

Corps of Engineers, which as an example, has enabled us to better incorporate reservoir releases 

into our river forecasts." Overall, as summarized in the Colle et al. (2021) paper: participants 

embraced the unique, highly interactive exercises, games, peer and stakeholder presentation 

sessions. Several forecasters also viewed the improvisational teaching methods as an adaptive staff 

training opportunity. The participants have reported that clear, concise messaging and personal 

engagement has been key to enhancing their connection with NWS core partners. 

 

These two in-person workshops only involved a limited number of forecasters and stakeholders.  

Unfortunately, because of COVID-19 we were not able to have our final (3rd) workshop for this 

project. As noted below in the “problems and difficulties” part of the report we are exploring an 

online version.  We are considering an online workshop in earl 2022, which would (1) provide 

workshops in an online format that can train many more NWS forecasters; (2) allow for more 

stakeholder interaction and help improve IDSS support; and (3) complete a more social science 

assessment to understand how effectively the forecasters utilize operationally what they learned.  

 

Covid-19 travel restrictions and travel budget limitations within the NWS necessitate the potential 

use of online versions of our previous workshops and the development of a new capstone 

workshop.  Even after Covid-19, a new online approach can positively impact more NWS 

forecasters than the less frequent and logistically more challenging in-person meetings, and the 

larger sample size for online meetings can provide more data for assessment. Over the course of 

2020-2021, the Alda Center has successfully transitioned several in-person workshops to online 

offerings. Our experience and participant feedback indicates that much of the experiential nature 

of the Alda Method® can be retained, and, in some cases, enhanced in online forms. Since many 

stakeholder interactions often occur online (online group chats, social media, and phone calls), 

there is a need to evaluate these online communication approaches.  

 

 

4. Products and Presentations 

a. Fuzzy Clustering and other Ensemble Tool 

The fuzzy clustering and other ensembles tools (ensemble sensitivity,  wave packets, cyclone 

tracks, etc) are currently maintained and accessible from our CSTAR page: 
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http://breezy.somas.stonybrook.edu/CSTAR/Models.html 

 

b. Clustering tools   

 

This CSTAR has motivated the clustering approach to be made operational at WPC on a 

webpage (Fig. 18). The links are   

https://origin.wpc.ncep.noaa.gov/wpc_ensemble_clusters/day_3_7/view.php for days 3-7, 

and   https://origin.wpc.ncep.noaa.gov/wpc_ensemble_clusters/day_8_10/view.php for 

days 8-10. Clusters are now generated for 4 regions (East, Central, West, and Alaska twice 

daily (0000 and 1200 UTC) out to day 10 using the GEFS, CMC, and EC ensembles. 

 

 

 

 

 

 

 

 

 

Figure 18. The regional cluster web page showing the pulldown regional options.  

Figure 19 shows the new DESI (Dynamic Ensemble-based Scenarios for IDSS) software 

interface for NOAA clustering on a workstation (funding and effort for this was from a 

NOAA JTTI) for an event on 18-19 February 2022. It illustrates how the user can select the 

region of interest, the clustering period (day 9 in this example), the meteogram location 

(ISP), and the initialization date (0000 UTC 10 Feb 2022). The user can group by clusters 

or ensemble system (GEFS, EC, and CMC). Figure 19 also shows the three 500 hPa clusters 

at day 9 and the height anomaly calculated with respect to the full (100 member) ensemble 

mean, which illustrates three scenarios with the mid-level trough over the eastern U.S, with 

cluster 3 (39% of member) having a deep trough.  

 

This DESI is now operational at over 40 NWS forecast offices in August 2022. 

 

http://breezy.somas.stonybrook.edu/CSTAR/Models.html
https://origen.wpc.ncep.noaa.gov/wpc_ensemble_clusters/day_3_7/view.php
https://origen.wpc.ncep.noaa.gov/wpc_ensemble_clusters/day_8_10/view.php
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Figure 20. DESI interface showing how forecasters can choose domain, time period, 
cluster(s) for viewing, and the three 500-hPa cluster patterns with the anomaly 
calculated with respect to the full ensemble mean. 

 

c. Formal Papers 

Zheng, M., E. Chang, and B.A. Colle: 2022: Downstream predictability associated with Rossby 

wave packets for East coast winter storms In revision for Mon. Wea. Rev. 

Kiel, B, and B. Colle, 2022: Comparison of Clustering Approaches in a Multimodel Ensemble 

for U.S. East Coast Winter Storms. In revision to Wea. Forecasting. 

Colle, B.A., R. Auld, K. Johnson, C. O’Connell, T.G. Taylor, and J. Rice, 2021: Improving 

communication of uncertainty and risk of high- impact weather through innovative 

forecaster workshops. Bull. Amer. Meteor. Society, 102, 1424-1430. 

https://doi.org/10.1175/BAMS-D-20-0108.1. 

Zheng, M., E. Chang, and B.A. Colle: 2019: Evaluation of a multi-model ensemble for 

extratropical cyclones using a fuzzy clustering approach.  Wea. Forecasting, 147, 1967-

1987. 

https://doi.org/10.1175/BAMS-D-20-0108.1
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Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the mid-

latitude Rossby waveguide, Mon. Wea. Rev., 146, 1965-2001.  

Mandelbaum T., B.A. Colle, 2021: Assessing the spread-error relationship for East Coast winter 

storms. To be submitted to Wea. Forecasting.  

Zheng, et al, 2022: Ensemble sensitivity of U.S. East Coast winter storms: the multi-mode l 

climatology and paths of forecast uncertainty in medium range. In preparation. 

 

d. Stony Brook CSTAR graduates (alum)/students: 

David Stark (M.S., 2012) – NWS General Forecaster at Upton, NY 

Matthew Souders (M.S., 2013) –Weather Analytics, New Hampshire 

Michael Layer (M.S., 2014) – Weatherworks, Hackettstown, NJ 

Michael Erickson (Ph.D., 2015) – NOAA Contractor (Weather Prediction Center) 

Minghua Zheng (Ph.D. -2016, Post-doc at Scripps) 

Nathan Korfe (M.S. 2016) – Research Meteorologist at WindLogics, MN) 

Taylor Mandelbaum (M.S. 2018)—Meteorologist and Data Analyst at NY Power Authority 

Benjamin Kiel– M.S. 2021) – Forecasting, coding and instrumentation related to missile testing 

at Regan Test Site on Kwajalein Atoll in the Marshall Islands. 

 

 


