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Strongly Coupled Data Assimilation (SCDA)

* Observation assimilation updates all modeled components of Earth system

* SCDA: Extremely computationally demanding (e.g. Liu et al. 2013; Penny & Hamill 2017)

e Coupled forecast and “strongly coupled” DA: cross-medium updates

* “Weakly coupled” approximations (WCDA) (e.g. Saha et al. 2006; Zhang et al. 2007; Penny et al. 2019)

» Separate DA in atmosphere & ocean with a coupled forecast step
* No “cross covariance” influence from observations

* Potentially “incompatible” states

 Still very computationally demanding




|s SCDA Worth the Expense?

Need an efficient way to estimate the benefits

We propose a framework for this estimate using a linear emulator

* Low dimensionality promotes experimentation/prototyping
* Unlike “toy” models, the emulator skillfully forecasts observed fields

* Allows unapproximated Kalman filter, and WCDA-SCDA evaluation



Linear Inverse Models (LIMs)

e.g. Penland (1989); Newman et al. (2003); Breeden et al. (2020)
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and the noise error-covariance matrix

covle.e) = N.=C - G.CG! C = cov(xn.Xn)



LIM Training

Climate Forecast System Reanalysis (CFSR) (saha et al. 2010)

Global gridded fields of 2m air temperature (T, ), SST, 850 hPa u & v, and OLR

* diurnal & 5-day running mean; seasonal cycle removed

Truncate to leading 30 EOFs for each variable (150 degrees of freedom in total)
LIM training period: 1979-2003 (9130 days)

LIM validation period: 2004-2010 (2556 days)



LIM forecast verification 2004-2010
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Kalman Filter using the LIM

analysis
Xqg — Xf -+ K(y — HXf)
P,=(I1-KH)P;
Sl e
forecast full matrices!
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Cycling time t = 1 day



Pointwise observations from CFSR

y = Hx +e= HUx + H*n H ™: obs operator on CFSR grid

obs from truncation
LIM basis error . .
R derived from truncation error
tas observation locations tos observation locations

104 locations 73 locations



DA Experiments

Uncoupled: atmosphere
 Atmosphere components of the LIM & atmosphere observations

Uncoupled: ocean

* (Ocean components of the LIM & ocean observations

Weakly coupled (WCDA)

* Full LIM; separate DA in atmosphere & ocean; no cross covariances

Strongly coupled (SCDA)
e Full LIM; fully coupled DA



Global-mean Mean Squared Error

/ uncoupled (control) experiments
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SCDA Change from Uncoupled 10-day Forecasts

SST
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* improved tropics
* degraded NH extratropics

e global improvement



SCDA without SST observations
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SCDA Results During the Training Period

alobal-mean MSE
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SCDA Training Period 10-day Forecast Change
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Spatial pattern of % change in MSE relative to the control case.



Experiments with larger training data: JRAS5

TAS Corr Coef Difference: dav 12 =

* JRALIM trained 1958-2000

* CFSR LIM trained 1980-2000 b=
* Validation: CFSR 2001-2008 . Lindsey Taylor (UW)




Summary: LIM DA Proof of Concept

* LIMs provide a flexible tool for coupled-DA hypothesis testing
e Kalman filtering, 4DVAR, ensemble strategies, etc.

SCDA performs better than WCDA in all experiments

Relative to control, single-domain, experiments, SCDA:
* improves SST forecasts: ~10—-25% better in global mean; 40+% locally
* improves tropical T,,, forecasts; degrades extratropical NH T, forecasts
* large T, improvement during training does not hold up in validation

Currently exploring other LIM bases not truncated on EOFs; ensembles; seasonality
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