Captured MJO-QBO Connection in a Subseasonal Prediction System

Kai Huang¹, Jadwiga H Richter², and Kathleen V Pegion³

¹AOES Department, George Mason University ²Climate and Global Dynamics Laboratory, National Center for Atmospheric Research ³School of Meteorology, University of Oklahoma

Discovery of QBO-MJO Connection (2016)

Yoo and Son 2016, Son et al., 2017.

MJO is stronger and more likely to cross the Maritime Continent (MC) in QBOE than QBOW.

Accounting for ~40% of the MJO interannual variation.

20-100-day-band-pass-filtered OLR Variance

f EQBO-WQBO

Also Found in S2S Prediction Systems (2017-2020)

Marshall et al., 2017. Higher MJO predictability in QBOE than QBOW years.

Wang et al., 2019, Lim et al., 2019, Abhik and Hendon, 2019, Kim et al., 2019, Martin et al., 2020. Higher MJO prediction skill in QBOE than QBOW years.

MJO Prediction Skills (days) in Forecast Models

Struggling to find the Responsible Mechanism (2017-now)

Son et al., 2017, Zhang and Zhang, 2017, Sun et al., 2019, Sakaeda et al., 2020. Increased HIGH CLOUD in QBOE over the MC.

May influence the cloud-radiative feedback/local diurnal cycle precip.

Hendon and Abhik, 2018, Lee and Klingaman, 2018, Abhik and Hendon, 2019, Martin et al., 2019, Martin, et al., 2021 ...

Decreased **STATIC STABILITY** around the tropopause in QBOE.

Destabilize the tropopause.

Equatorial Zonal Mean Temp Profile

MJO Temp Anomalies

Missing in Climate Models (hopefully not forever)

Kim et al., 2020

Trying to Capture it in Models (2019-now)

Martin et al., 2019. Two consecutive MJO cases by WRF. Adding QBO temp/uwnd anomalies in the stratosphere. Weak, but Captured, only by adding temp! (Supporting Tropopause Instability)

Martin et al., 2020. S2S predictions by ECMWF. Stratospheric initial conditions substituted by one arbitrarily selected QBOE/QBOW day, respectively. Weak, but Captured!

Back et al., 2020. One MJO Case in a QBOE winter by WRF. Reversing the low-pass-filtered QBO variation in the stratosphere. Weak, but Captured! (Supporting Tropopause Instability)

Trying to Capture it in Models (2019-now)

Martin et al., 2021. Long-term Simulation by NASA GIS. Nudged zonal-mean uwnd and vwnd in the stratosphere. Realistic QBO temp but FAILED! Several more GCMs are also tried, but all failed!

What might be wrong?

Can We Answer More Questions?

Where comes the QBO-MJO connection in S2S Prediction Systems? *Maintaining the stronger MJO from the I.Cs in QBOE than in QBOW The correct model physics*

□ Design: Two MJO case hindcasts in QBO-neutral winters
 ✓ NO QBO influence on MJO in the I.Cs.

Which is crucial, the QBO wind shear, or the QBO temperature profile? *Revisit the tropopause instability theory.*

Design: Adding zonal mean QBO temperature and uwnd respectively.

Free MJO Case Hindcast by CESM2 Subseasonal Prediction System (21 member)

Sudging Files for Ctrl Runs 3D 45-day Outputs + 2xQBOE QBOE QBOW 2xQBOW Uwnd and Temp Uwnd and Temp Uwnd and Temp	Experiment	Run	Nudged Variable	
			U	T
	PreCtrl	N/A	No	No
	QBOT_FreeU	Ctrl	No	PreCtrl PreCtrl + OPOE
		QBOE	No	PreCtrl+QBOE PreCtrl+QBOW
		sQBOE	No	PreCtrl+2×QBOE
		sQBOW	No	PreCtrl+2×QBOW
Nudging Files for QBO/sQBO runs	QBOU_FreeT	Ctrl	PreCtrl	No
		QBOE	PreCtrl+QBOE	No
		QBOW	PreCtrl+QBOW	No
		sQBOE	$PreCtrl+2 \times QBOE$	No
		sQBOW	PreCtrl+2×QBOW	No
		Ctrl	PreCtrl	PreCtrl
		QBOE	PreCtrl+QBOE	PreCtrl+QBOE
Stratospheric Nudging	QBOUT	QBOW	PreCtrl+QBOW	PreCtrl+QBOW
Zonal mean nudging		sQBOE	$PreCtrl+2 \times QBOE$	PreCtrl+2×QBOE
\Box 12 hourly		sQBOW	$PreCtrl+2 \times QBOW$	PreCtrl+2×QBOW
Complete nudging above 100hPa				
No nudging below 150hPa				
□ Linear transition in between				0

Predicted Ensemble-Mean OLR Anomaly Hovmoller Diagram Case A (QBOT_FreeU)

Case B (QBOT_FreeU)

Predicted Ensemble-Mean OLR Anomaly Hovmoller Diagram Case B (QBOT_FreeU)

Captured Only in QBOT_FreeU!

Zonal-Mean Temp (shading) and Uwnd (Lines), QBOE-QBOW

Freely-Evoving QBO Uwnd shear might be Crucial.

Zonal-Mean Tropopause Instability can NOT fully explain it!!!

Nudging temp/uwnd will generate the other.
Bias in the center for uwnd shear by nudging temp.

What about MJO-scale tropopause instability?

MJO Amplitude (ROMI OLR) Against MJO-Scale Tropopause Stability (T'100-T'200)

ROMI Phase 6/7 Case A

- Significant correlation between MJO amplitude and MJO tropopause stability in all experiments.
- But only QBOT_FreeU captures QBO-MJO connection.

ROMI Phase 6/7 Case B

MJO-Scale Tropopause Instability is also NOT enough to explain it!!!

Summary

- □ Zonal-mean QBO uwnd/temp nudged into two MJO case hindcasts in QBO-neutral winters.
- Only QBOT_FreeU can capture the QBO-MJO connection.
- Prediction system has the potential to capture QBO-MJO connection even without the help from the I.Cs.
- □ Tropopause instability theory alone can not fully explain the capture connection.

Outlook

□ How about the long-term uninitialized simulations in climate models?

What is also responsible other than the tropopause instability?
 Interactions between the waves and zonal-mean flow?

Case A&B in OBS and PreCtrl (no nudging)

18

Why these Conclusions are Different from that in Martin et al., 2019?

One possible reason: How to Measure MJO Amplitude

In WRF (Regional Model)

In CESM2 (Global Model)

Martin et al., 2019

Week 3-4

QBOUT

ROMI OLR Case B (QBOT_FreeU)

ROMI Phase 6/7 Case A (QBOT_FreeU)

ROMI Phase 6/7 Case B (QBOT_FreeU)

Linear Correlation Coefficients of High-Freq U100 Variance against Phase 6/7 ROMI Amplitude among Ensemble Members

Case A

(b) QBOT_FreeU <5 day var 20N 10N EQ 10S 20S 30E 60E 90E 120E 150E 180 150W

Case B

(c) QBOU_FreeT

