METplus

Recent Enhancements to METplus for Weeks 3-4 Evaluation and Diagnostics

Tara Jensen on behalf of the METplus Team

NCAR/RAL

and Developmental Testbed Center

Week 3-4/S2S Webinar

2 May 2022

Overview

New process-based metrics in **METplus (v4.1)**

- Real-time Multivariate MJO Index (RMM)
- OLR Based MJO Index (OMI)
- Atmospheric Blocking
- Weather Regime Analysis
- Zonal/Meridional Means
- Marine and Cryosphere Metrics
- A twist on standard statistics
- Upcoming development

5.2.8. Subseasonal to Seasonal

Subseasonal-to-Seasonal model configurations; Lower resolution model configurations (>4km) usually producing forecasts out beyond 14 days and up 1 year

Blocking Calculation:

RegridDataPlane,

PcpCombine, and

Blocking python

TCGen: Genesis **Density Function** (GDF) and Track **Density Function**

UserScript: Make

OMI plot from

indices

calculated MJO

Blocking Calculation: RegridDataPlane, PcpCombine, and Blocking python

WeatherRegime RegridDataPlane, PcpCombine, and

WeatherRegime

RegridDataPlane,

PcpCombine, and

Calculation:

Covered in Previous Presentations

Process Oriented Diagnostics – General Approach

• Run scripts from multiple repositories

• MET, METcalcpy, METplotpy, METdatadb

• Specifically: include combinations of the following:

- Pre-processing steps
 - MET tools (like pcp_combine, regrid_data_plane)
 - python scripts (METcalcpy)
- Indices and diagnostics calculated in python (METcalcpy)
- Graphics (METplotpy)
- Statistics computed on the output (stat_analysis, etc.)
- Use multiple input files
 - Similar to MODE-TD, Series-Analysis
- Indices and diagnostics computed separately for model and observations
- Run using a driver script and called in METplus with UserScript

Driver Script Simple Example

Why so complicated?

- Standardization
 - Data ingest
 - Computation of statistics (e.g. Anomaly Correlation and Skill Scores)
 - Plotting
- Operational constraints
 - Need to limit Python-packages (as per NCO requirements)
- Flexibility and Re-usability
 - Remove hard-wiring from contributed code (e.g. field names, sample size, thresholds
 - Compute similar derived fields for different inputs (e.g. monthly mean of temperature, winds, heights, pressures at different levels) for different metrics

Real Time Multivariate MJO Index Use Case

- UserScript_obsERA_obsOnly_RMM.conf:
 - RMM_driver.py
- Data:
 - OLR, 850 mb wind, 200 mb wind anomalies
 - EOFs1 and 2 for OLR, u850, u200
 - Text files from BoM Australia
- 4 optional pre-processing step (optional)
 - Pcp_combine: mean daily annual cycle and daily means
 - Regrid_data_plane: cut the domain to -15 15 latitude
 - Compute anomalies (3 variables)
 - harmonic analysis in METCalcpy (UserScript)
- 1 Calculation, RMM
 - METcalcpy (contributed/rmm_omi): compute_mjo_indices.py
- 3 Plots: time series, EOFs, phase diagram
 - METplotpy (contributed/mjo_rmm_omi): plot_mjo_indices.py
- Output 3 plots, separate for model/obs

RMM Setup

Calculation includes

- Removes 120 day mean
- Normalize by square root of variance
- Regress data onto EOF patterns
- Normalize principal components by standard deviation

Configuration Options

- Run forecast, obs, or both
 - RMM calculated separately
- Number of Observations per day
- EOF filenames (not a template)
- Normalization Factors
- Plotting specific variables (start/end times, output file names and format)
- Input directories and templates (UserScript section)

	# Make OUTPUT_BASE Available to the script ទលករចុក _ល្យកុម្យBASE = {ល្យកុម្យBASE}	
	<pre># Number of obs per day OBS_PER_DAY = 1</pre>	
	# Variable names for OLR, U850, U200 OBS_OLR_VAR_NAME = OLR_anom	
	ORS_URS0_VAR_NAME = U_P850_anom OBS_U200_VAR_NAME = U_P200_anom	
_RMM/EOF y_RMM/EO y_RMM/EO	<pre>JF/rmm_olr_eofs.txt OLR_EOF_INPUT_TEXTFILE = {INPUT_BASE}/model_applications/s2s/UserSG 0F/rmm_u850_eofs.txt U850_EOF_INPUT_TEXTFILE = {INPUT_BASE}/model_applications/s2s/UserSG 0F/rmm_u200_eofs.txt U200_EOF_INPUT_TEXTFILE = {INPUT_BASE}/model_applications/s2s/UserSG</pre>	cript_obsERA_obsO Script_obsERA_obs Script_obsERA_obs
	# Normalization factors for RMM	
	RMM_U850_NORM = 1.81355 RMM_U200_NORM = 4.80978	
	PC2_NORM = 8.40736449709697	
	<pre># Output Directory for the plots # If not set, it this will default to {OUTPUT_BASE}/plots RMM_PLOT_OUTPUT_DIR = {OUTPUT_BASE}/s2s/UserScript_obsERA_obsOnly</pre>	_RMM/plots
	# EOF plot information ድሪዮ-ሥሬሪካ_ሪህግሥሪካ_ለአለሉ = ጒለሰለ_ድሪዮs EOF_PIOT_OUTPUT_FORMAT = png	
	ame, and format # Phase Plot star	t date, end date, Big = 2002010100
itput nam		
1 tput na n 20021230 07851235_1 NAMI T 2 1 0	93899 	ASE_PLOT_TIME_END (SE_PLOT_TIME_ENT SEPHASIF_PLOT_OUTP)

OMI Use Case

- UserScript_fcstGFS_obsERA_OMI.conf, USerScript obsERA_obsOnly_OMI.conf:
 - OMI_driver.py
- OLR, EOFs1 and 2 (text from PSL, one file for each day of the year)
- 2 optional pre-processing step (turned off)
 - Pcp_combine: daily means
 - Regrid_data_plane: cut the domain to -20 20 latitude
 - Both model and observation
- 1 Calculation, OMI
 - METcalcpy (contributed/rmm_omi): compute_mjo_indices.py
- 1 Plot: phase diagram
 - METplotpy (contributed/mjo_rmm_omi): plot_mjo_indices.py
- Output plots separate for model/obs

Blocking Overview

- UserScript_fcstGFS_obsERA_Blocking.conf, UserScript_obsERA_obsOnly_Blocking.conf
 - Blocking_driver.py
- Daily mean and anomaly 500 mb height, preferably 20 30 years
- 4 pre-processing steps (turned off)
 - Regrid_data_plane: Regrid to 1 degree
 - Pcp_combine: daily mean/forecast lead mean, running means, computing anomalies
- 4 Blocking calculation steps (METcalcpy), run in order
 - CBL (Central Blocking Latitude), IBL (Instantaneously Blocked Longitudes), GIBL (Group IBLs), Blocking Frequency
 - IBLs and Blocks written to MET's matched pair (MPR) format if both run
 - METcalcpy (contributed/blocking_weather_regime): Blocking.py, Blocking_WeatherRegime_util.py

3 optional plots

- CBL, IBL, Blocking Frequency
- METplotpy (contributed/blocking_s2s): plot_blocking.py, CBL_plot.py

Contributed by Wang and Li, UIUC

Blocking Overview Continued

• 2 Stat-Analysis runs (if both model and obs run)

- Contingency Table statistics for IBLs and Blocks
- Output Notes:
 - Central Blocking Latitudes (CBLs) and blocks plotted separately for model and observations
 - Instantaneous Blocking Latitudes (IBLs) on same plot

Example Blocking Output

- **Central Blocking Latitude** Latitude maximum of high pass filtered geopotential height variance, weighted by cosine
- IBL: Computes IBLs using Pelly-Hoskins method (Barnes et al. 2012) - Looks for reversals in Geopotential Height gradient
 - Easterly flow equatorward of block
- **GIBL -** Groups IBLs by applying spatial thresholds
- Required: daily 500 mb height files, number seasons, days per season

Blocking Stat-Analysis

• IBL and Blocking output to matched pair format

- 0/1 Binary
- File for each day
 - Line for each longitude
 - CBL output for latitude

Statistic	IBL	Blocks
CSI	0.558	0.559
FBIAS	1.01	1.01
PODY	0.717	0.721
PODN	0.976	0.990
FAR	0.285	0.288

Weather Regime Overview

- UserScript_fcstGFS_obsERA_WeatherRegime.conf, UserScript_obsERA_obsOnly_WeatherRegime.conf
 - WeatherRegime_driver.py
- Daily mean 500 mb height, preferably 20 30 years
- 2 pre-processing steps (turned off)
 - Regrid_data_plane: Regrid to 1 degree
 - Pcp_combine: daily mean/forecast lead mean
- 4 calculation steps, run any except frequency
 - Elbow (optimal clusters), EOFs, K-means, Frequency
 - Weather Regime classification and frequency written to MET's MPR format if both run
 - METcalcpy (contributed/blocking_weather_regime): WeatherRegime.py, Blocking_WeatherRegime_util.py

4 optional plots

- Elbow, EOFs, K-means, Frequency
- METplotpy (contributed/weather_regime): :plot_weather_regime.py

Contributed by Wang and Li, UIUC

Weather Regime Overview Continued

- 2 Stat-Analysis runs (if both model and obs run)
 - Multi-Category Contingency Table Statistics file for the weather regime classification
 - Continuous Statistics file for the weather regime frequency

Additional Output:

• Classification file (day and regime) in text or netCDF for model and observations

ERA EOFs Dec 2000 – Feb 2017

Weather Regime Classification

ERA Dec 2000 – Feb 2017

GFS Dec 2000 – Feb 2017

Frequency and PLOTFREQ

- Computes the frequency of each classified weather regime over a time period
- Needs: weather regime classification array
- Optional Input:
 - Number of days to compute the frequency (7 days)
 - Plot title, and output name

Weather Regime Stat-Analysis

- Weather Regime Classification and frequency output to matched pair format
 - File for each day
 - One line per file with classification or frequency

Multi-Category Contingency Table Statistics HSS: 0.593

Category	Frequency Correlation
WR1	0.906
WR2	0.859
WR3	0.951
WR4	0.923
WR5	0.952
WR6	0.932

Zonal/Meridional Means

- Work in progress
- UserScript_obsERA_obsOnly_Stratosphere.conf:
 - meridional_mean.py
- Reads u, v, Temperature, Geopotential Height 3D data
- Calculations:
 - zonal mean for u and Temperature
 - Meridional mean on zonal mean Temperature
- 4 calculation steps, run any except frequency
- Separate plots in METplotpy:
 - Zonal mean wind and temperature contour plots
 - Polar zonal mean

Contributed by Butler and Lawrence, UIUC

CFSv2 Fields and Baselining with CPC

- Discrepancies in Brier Skill Score (BSS) values
 - Rounding differences
- New tool, Gen-Ens-Prod, for standardized anomalies creation
 - Added normalized anomalies from climatology, ensemble data
 - Reference Brier Score (BRIERCL) output
 - Read all ensemble members from 1 file
- METplus replicates Brier Score (BS), BSS values <0.01 difference
- Recently diagnosed additional capability needed to support how CPC uses Heidke Skill Score (HSS)

- 37 // May be set separately in each "field" entry
- 8 //
- 39 censor_thresh = [];
- 40 censor_val = [];
- 41 normalize = NONE;
- 42 cat_thresh = [];
- 43 nc_var_str = "";

CPC Weather Watch Areas (WWAs)

- Goal: Verify Week-2 hazard forecasts using WWAs
 - Focus on Cold hazards, 8 day
 - Utilized Method for Object-based Diagnostic Evaluation (MODE) tool
 - Investigated beyond binary forecast verification
- Compute Median of Maximum Interest (MMI)
- Garner forecaster input, website development

Contributed by Hicks, CPC

Marine and Cryosphere

- Satellite verification of
 - Sea Surface Temperature
 - Sea Surface Salinities
 - Sea Surface Height

time = 2021-05-03T12:00:00, altitude = 0.0

Upcoming

- Marine and Cryosphere:
 - Scatterometer Winds
 - Altimeter Wave Heights
- Stratosphere:
 - Sudden Stratospheric Warming
 - Gravity Wave Drag (need expert to help)
- Land Surface Modeling
 - Coupling Index

- ENSO
 - ENSO Indices based on machine-learning derived climos
- Tropical MJO
 - Application of MODE-Time Domain (MTD) to identify zonal and meridional phase speed in precipitation fields.

		DETERMNISTIC	ENSEMBLE		F	inal Mo	etrics
FIELD	LEVEL	METRIC	METRIC			Tior	1
TIER 1							±
Temperature Anomaly	2-meter	Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread	<u>https://d</u> _dtc-ufs-e	tcenter.or valuation-	g/events/20 -metrics-	<u>021/2021</u>
		Anomaly Correlation (climatology):		workshop/final-metrics-lists			
RMM1 and RMM2 (MJO)		Verification: ECMWF for S2S, observed OLR for OMI, observed OLR and ERA5 winds for RMM, GFS analysis	RMSE of Ensemble Mean + Ensemble Spread	Precipitation Anomaly	Surface	Heidke Skill Score	Pattern Anomaly Correlation, ETS and Bias of the Ensemble Mean or Performance Diagram CRPS and Bias.
				NAO/PNA Index		Anomaly Correlation (climatology)	RMSE of Ensemble Mean + Ensemble Spread
	Anomaly Correlation (climatology); Verification:		AO/AAO Index		Anomaly Correlation (climatology)	RMSE of Ensemble Mean + Ensemble Spread	
Oceanic Nino Indices (ENSO)		OSTIA, OISST, OISSTV2.1, ERSST, *not* OISST, ERSSTv5	RMSE of Ensemble Mean + Ensemble Spread	Outgoing Longwave Radiation (MJO)	Top of Atmos	RMS + Mean Error Bias	RMSE of Ensemble Mean + Ensemble Spread

					F	-inal M	etrics	
TIER 2						Tior	2	
Tibaldi-Molteni Index (Blocking)		Anomaly Correlation	RMSE of Ensemble Mean + Ensemble Spread			ПСГ	2	
Standardized Precip Index		Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread					
Geopotential Height Anomalies	500-hPa	Anomaly Correlation, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread					
		Zonal Mean Zonal Wind at 60N, 10hPa turning easterly,	RMSE of	Palmer Drought Severity Index		Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread	
Sudden Stratospheric Warming	10 hPa at 60 N	probaility detection or false alarm Zonal wind turns	Ensemble Mean + Ensemble Spread, Ranked Probability Skill Score	Ensemble Mean + Ensemble Spread, Ranked Probability Skill Score				
Basin-Wide TC Counts		ACC	RMSE of Ensemble Mean + Ensemble Spread	Sea Ice Concentration	Surface	Heidke Skill Score, Performance Diagram	RMSE of Ensemble Mean + Ensemble Spread	

.

TIER 3			
Sea Ice Edge	Surface	Integrated Ice Edge Error, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread
Fire Danger Index		Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread
Sea-Ice Thickness	Layer depth	RMSE, Bias, Taylor Diagram	RMSE Ens Mean + Spread, Bias
U/V Wind Anomaly	850-hPa	RMS + Mean Error Bias, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread, ACC
U/V Wind Anomaly	200-hPa	RMS + Mean Error Bias, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread, ACC
Precipitation	Surface	RMS+Bias	RMSE of Ensemble Mean + Ensemble Spread

Final Metrics Tiers 3 and 4

TIER 4			
Sea-Ice Drift / Velocity	Surface	error radius, mean velocity difference	error radius and mean velocity difference of ensemble mean
Temperature	Sea Surface	RMS Error + Mear	RMSE of Ensemble
Temperature	2-meter	Heidke Skill Score, RMS + Mean Error Bias	RMSE of Ensemble
Geopotential Height	500-hPa	RMSE+Bias	RMSE of Ensemble
U/V Wind	850-hPa	RMS + Mean Error Bias, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread, ACC
U/V Wind	200-hPa	RMS + Mean Error Bias, Heidke Skill Score	RMSE of Ensemble Mean + Ensemble Spread, ACC

Gaps

S2S	See Seasonal	Fire Danger Index Also see Seasonal	ALEXI satellite data, CPC OLR Analysis, <i>Also See Marine/Cryo, Hydro, and Land</i>
Seasonal	Integrated Ice Edge	AO/AAO Index, NAO/PNA Index, Palmer Drought Severity Index, East Asian Summer Monsoon Index	CPC Precip Analysis, OSI-SAF 10km Analysis <i>Also see Marine/Cryo, Hydro, and Land</i>

https://dtcenter.org/events/2021/2021-dtc-ufsevaluation-metrics-workshop/metplus-metrics-gaps

Thank You for Your Attention

- Tara Jensen, NCAR, jensen@ucar.edu
- <u>https://dtcenter.org/community-code/metplus</u>

