

NDAA Weeks 3-4 & S2S Webinar USING SIMPle, explainable neural networks to predict the Madden-Julian oscillation

October 4, 2021

Zane Martin

Eric Maloney

The Madden-Julian Oscillation

Summary of MJO Prediction

From 2010 up to ~now ...

Statistical Models

Empirical models which use statistical techniques to predict future MJO behavior given past relationship

- -~2 weeks of skill
- Wide range of approaches, but nearly all methods linear

Dynamical Models (Global) models which solve fluid dynamic & related equations, initialized from observations

- 3-5 weeks of skill
- Since 2000s, model processes improved, ensembles grew, intercomparisons developed

Summary of MJO Prediction

The future of statistical MJO prediction...

Non-linear methods and machine learning!

Machine Learning

Machine Learning

F

$$X \cdot A + y$$

Machine Learning

Artificial neural network models:

- Incorporate non-linearity into the data transformations
- Iterate over data during "training" data to minimize a *loss* function that describes how skillful the model prediction are

Maps of the key daily tropical variables (pre-processed)

Information about an MJO index at various leads

Maps of the key daily tropical variables (pre-processed)

Information about an MJO index at various leads

We explore <u>2 machine learning frameworks</u> for MJO prediction: one deterministic and one probabilistic

Regression Model

Deterministic model which outputs numerical values

Regression ANN Model

Regression ANN Model

Classification Model

 Model which outputs the probability across various categories

Classification Model

 A model which outputs the probability across various categories

Martin et al. (2021; submitted)

How skillful are ML models at predicting the MJO?

- ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- How might ML be useful to study and understand the MJO, in addition to predict it?

"Layerwise-relevance propagation" & other tools can help understand how the models work

"Layerwise-relevance propagation" & other tools can help understand how the models work

(g) OLR Input Composite (Phase 5; Lead-10 ANN)

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 Value (unitless/normalized)

(b) Lead 0 OLR Relevance (Confidence \geq 60 percentile)

(h) OLR Relevance (Confidence \geq 60 percentile; Lead-10 ANN)

- How skillful are ML models at predicting the MJO? How might one frame MJO prediction in an ML context?
 - ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- How might ML be useful to study and understand the MJO, in addition to predict it?
 - ML models computationally efficient, flexible, and explainable
 - XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill

(g) OLR Input Composite (Phase 5; Lead-10 ANN)

Additional Slides

Fully-connected artificial neural network

A *linear* data transformation might take the form:

 $W \cdot X + b$

Fully-connected artificial neural network

Neural network models introduce non-linearity into their transformations

Chollet 2018

Regression ANN Model

Martin et al. (2021; submitted)

- * How skillful are machine learning models at predicting the MJO?
- * How might ML be useful to study and understand the MJO?

Training Data: May 1979– Dec. 2010 Validation Data: Jan. 2010 – Nov. 2019

- * How skillful are machine learning models at predicting the MJO?
- * How might ML be useful to study and understand the MJO?

How might ML be useful to study and understand the MJO, in addition to predict it?

- * ML models computationally efficient, flexible, and explainable
- XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill

Thanks!

Martin et al. (2021; submitted)

A Machine-Learning Framework for the MJO

"Layerwise-relevance propagation" & other tools can help understand how the models work

(b) Lead 0 OLR Relevance (Confidence \geq 60 percentile)

A Machine-Learning Framework for the MJO

(a) Lead 0 OLR Composite (Phase 5)

(c) Lead 0 u850 Composite (Phase 5)

(e) Lead 0 u200 Composite (Phase 5)

(g) Lead 10 OLR Composite (Phase 5)

(i) Lead 10 u850 Composite (Phase 5)

(k) Lead 10 u200 Composite (Phase 5)

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 Value (unitless/normalized) (b) Lead 0 OLR Relevance (Confidence \geq 60 percentile)

(d) Lead 0 u850 Relevance (Confidence \geq 60 percentile)

(f) Lead 0 u200 Relevance (Confidence \geq 60 percentile)

(h) Lead 10 OLR Relevance (Confidence \geq 60 percentile)

(j) Lead 10 u850 Relevance (Confidence \geq 60 percentile)

(I) Lead 10 u200 Relevance (Confidence \geq 60 percentile)

Martin et al. (2021; in prep)

A Machine-Learning Framework for the MJO

OLR + u850 + u200 Model

Value (unitless/normalized)

Relevance (unitless) Martin et al. (2021; in prep)

Machine Learning & the MJO

Regression Model

* A model which outputs numerical values

Martin et al. (2021; in prep)

Figure S3

Figure S6: Strong training

Figure S7: sensitivity tests

Fig. S11: Additional variable tests of combinations of 4, 5, or 6 inputs 1. "Persistence" model which simple persists the initial condition

 $RMM1(t_0 + \tau) = RMM1(t_0)$ $RMM2(t_0 + \tau) = RMM2(t_0)$

2. <u>Vector autoregressive (VAR) scheme</u> (Maharaj & Wheeler 2005; Marshall et al. 2016)

Statistical bivariate forecast which captures 1-day typical change in RMM and steps forward (essentially akin to our prior "persistence" model)

$$\begin{bmatrix} RMM1(t) \\ RMM2(t) \end{bmatrix} = L \begin{bmatrix} RMM1(t-1) \\ RMM2(t-1) \end{bmatrix}$$

MLR used to calculate L in each season

Marshall et al. 2016:

 $\begin{aligned} \mathsf{RMM1}_t &= 0.9616 \ (\mathsf{RMM1}_{t-1}) - 0.1135 \ (\mathsf{RMM2}_{t-1}) \\ \mathsf{RMM2}_t &= 0.1257 \ (\mathsf{RMM1}_{t-1}) + 0.9875 \ (\mathsf{RMM2}_{t-1}) \end{aligned}$

M21 "L":

LR.coef_
<u>arrav([[0.967458440.11490354]</u> [0.12136748, 0.98466266]])

3. <u>Multiple linear regression (MLR) scheme (Kim 2008; Jiang et al. 2008; Kang & Kim</u> 2010; Seo et al. 2009, Wang et al. 2019)

Predicts RMM at lead τ given RMM at initial time and on prior days. Follow Kim & Kang (2010) who found j=2 (e.g. day 0 and day -1) is ok (Seo et al. 2009 used pentad data and retained more days, but change seemed relatively small).

$$\begin{bmatrix} RMM1(t_0 + \tau) \\ RMM2(t_0 + \tau) \end{bmatrix} = L_{\tau} \quad \Sigma_{j=1} \begin{bmatrix} RMM1(t_0 - j + 1) \\ RMM2(t_0 - j + 1) \end{bmatrix}$$

