

NOAA Weeks 3-4 & S2S Webinar *October 4, 2021*

USING SIMPIC, explainable neural networks to predict the Madden-Julian oscillation

Zane Martin

Eric Maloney

The Madden-Julian **Oscillation**

Summary of MJO Prediction

From 2010 up to ~now …

Statistical Models

Empirical models which use statistical techniques to predict future MJO behavior given past relationship

- ~2 weeks of skill
- Wide range of approaches, but nearly all methods linear

Dynamical Models (Global) models which solve fluid dynamic & related equations, initialized from observations

- 3-5 weeks of skill
- Since 2000s, model processes improved, ensembles grew, intercomparisons developed

Summary of MJO Prediction

The future of statistical MJO prediction…

Non-linear methods and machine learning!

Machine Learning

Machine Learning

 $X \cdot A + y$

Machine Learning

Artificial neural network models:

- Incorporate non-linearity into the data transformations
- Iterate over data during "training" data to minimize a *loss function* that describes how skillful the model prediction are

Maps of the key daily tropical variables (pre-processed)

Information about an **MJO index** at MACHINE Various leads

Maps of the key daily tropical variables (pre-processed)

Information about an **MJO index** at MACHINE Various leads

We explore **2 machine learning frameworks** for MJO prediction: one deterministic and one probabilistic

Regression Model

❖ Deterministic model which outputs *numerical values*

Regression ANN Model

Martin et al. (2021; submitted)

Regression ANN Model

Classification Model

❖ Model which outputs the *probability* across various categories

Classification Model

❖ A model which outputs the *probability* across various categories

Martin et al. (2021; submitted)

❖ **How skillful are ML models at predicting the MJO?**

- ❖ ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- ❖ **How might ML be useful to study and understand the MJO, in addition to predict it?**

"Layerwise-relevance propagation" & other tools can help understand how the models work

"Layerwise-relevance propagation" & other tools can help understand how the models work

(g) OLR Input Composite (Phase 5; Lead-10 ANN)

 $-1.00 - 0.75 - 0.50 - 0.25$ 0.00 0.25 0.50 0.75 1.00 Value (unitless/normalized)

(b) Lead 0 OLR Relevance (Confidence ≥ 60 percentile)

(h) OLR Relevance (Confidence ≥ 60 percentile; Lead-10 ANN)

- ❖ **How skillful are ML models at predicting the MJO? How might one frame MJO prediction in an ML context?**
	- ❖ ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- ❖ **How might ML be useful to study and understand the MJO, in addition to predict it?**
	- ML models computationally efficient, flexible, and explainable
	- ❖ XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill

Thanks!

(g) OLR Input Composite (Phase 5; Lead-10 ANN)

Martin et al. (2021; submitted)

Additional Slides

Fully-connected artificial neural network

A *linear* data transformation might take the form:

 $W \cdot X + b$

Fully-connected artificial neural network

Neural network models introduce *non-linearity* into their transformations

Chollet 2018

Regression ANN Model

Martin et al. (2021; submitted)

A Machine-Learning Framework for the MJO

0.8 (a) 1-Variable Models (active MJO)

Martin et al. (2021; submitted)

- ❖ How skillful are machine learning models at predicting the MJO?
- ❖ How might ML be useful to study and understand the MJO?

Training Data: May 1979– Dec. 2010 *Validation Data:* Jan. 2010 – Nov. 2019

- ❖ How skillful are machine learning models at predicting the MJO?
- ❖ How might ML be useful to study and understand the MJO?

❖ **How might ML be useful to study and understand the MJO, in addition to predict it?**

- ❖ ML models computationally efficient, flexible, and explainable
- ❖ XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill

Thanks!

A Machine-Learning Framework **for the MJO**
Winter Model Forecast Skill

Martin et al. (2021; submitted)

"Layerwise-relevance propagation" & other tools can help understand how the models work

(b) Lead 0 OLR Relevance (Confidence ≥ 60 percentile)

0.00	0.06	0.12	0.18	0.24	0.30
			Relevance (unitless)		

(a) Lead 0 OLR Composite (Phase 5)

(c) Lead 0 u850 Composite (Phase 5)

(e) Lead 0 u200 Composite (Phase 5)

(g) Lead 10 OLR Composite (Phase 5)

(i) Lead 10 u850 Composite (Phase 5)

(k) Lead 10 u200 Composite (Phase 5)

 $-1.00 - 0.75 - 0.50 - 0.25$ 0.00 0.25 0.50 0.75 1.00 Value (unitless/normalized)

(b) Lead 0 OLR Relevance (Confidence ≥ 60 percentile)

(d) Lead 0 u850 Relevance (Confidence ≥ 60 percentile)

(f) Lead 0 u200 Relevance (Confidence ≥ 60 percentile)

(h) Lead 10 OLR Relevance (Confidence \geq 60 percentile)

(j) Lead 10 u850 Relevance (Confidence ≥ 60 percentile)

(I) Lead 10 u200 Relevance (Confidence ≥ 60 percentile)

Martin et al. (2021; in prep)

Value (unitless/normalized)

Relevance (unitless) Martin et al. (2021; in prep)

Regression Model

❖ A model which outputs *numerical values*

Martin et al. (2021; in prep)

Figure S3

Figure S6: Strong training

Figure S7: sensitivity tests

Fig. S11: Additional variable tests of combinations of 4, 5, or 6 inputs

1. "Persistence" model which simple persists the initial condition

 $RMM1(t_0 + \tau) = RMM1(t_0)$ $RMM2(t_0 + \tau) = RMM2(t_0)$

2. **Vector autoregressive (VAR) scheme** (Maharaj & Wheeler 2005; Marshall et al. 2016)

Statistical bivariate forecast which captures 1-day typical change in RMM and steps forward (essentially akin to our prior "persistence" model)

$$
\begin{bmatrix} RMM1(t) \\ RMM2(t) \end{bmatrix} = L \begin{bmatrix} RMM1(t-1) \\ RMM2(t-1) \end{bmatrix}
$$

MLR used to calculate **L** in each season

Marshall et al. 2016: M21 "**L**":

 $RMM1_t = 0.9616$ (RMM1_{t-1}) - 0.1135 (RMM2_{t-1}) RMM2_t = 0.1257 (RMM1_{t-1}) + 0.9875 (RMM2_{t-1})

3. **Multiple linear regression (MLR) scheme** (Kim 2008; Jiang et al. 2008; Kang & Kim 2010; Seo et al. 2009, Wang et al. 2019)

Predicts RMM at lead τ given RMM at initial time and on prior days. Follow Kim & Kang (2010) who found j=2 (e.g. day 0 and day -1) is ok (Seo et al. 2009 used pentad data and retained more days, but change seemed relatively small).

$$
\begin{bmatrix} RMM1(t_0 + \tau) \\ RMM2(t_0 + \tau) \end{bmatrix} = L_{\tau} \ \Sigma_{j=1} \begin{bmatrix} RMM1(t_0 - j + 1) \\ RMM2(t_0 - j + 1) \end{bmatrix}
$$

