

Applying Machine Learning to Improve Subseasonal to Seasonal (S2S) Forecasts

Judah Cohen, Sonja Totz, Genevieve Flaspohler, Soukaya Mouatadid, Paulo Orenstein, Dara Entekhabi and Lester Mackey

11/7/2022

Subseasonal Forecasting: precipitation & temperature

- Allocating water resources
- Managing wildfires
- Preparing for weather extremes e.g., droughts, heavy rainfall, and flooding
- Crop planting, irrigation scheduling, and fertilizer application
- Energy pricing

Data as of Aug. 31 Source: North American Drought Monitor

Source: https://iri.columbia.edu/news/qa-subseasonal-prediction-project/

Reasons for incorporating machine learning

- Data Science and Machine Learning (ML) have a long history in atmospheric science.
- Processing much larger datasets with new ML techniques could improve models and forecasts.
- Still need to understand the underlying physics and chemistry to select the data and methods: *the machine student needs an intelligent teacher.*
- While ML can be computationally expensive and hard to interpret, it can also find new features and generate new research questions.
- Dynamical models have many shortcomings that can be revealed and improved with the help of data analysis.

Adaptive Bias Correction (ABC)

Debiased model

Averages dy over a range and lead tin Ensembled dates and w learned ada

Dy

Adaptive Bias Correction (ABC)

Dynamical Model

Takes any dynamical model as input and produces a corrected model as output. Efficient, explainable, and adaptive. /++ nean or n in lay of and n d tuning

Corrected Dynamical Model

Adaptive Bias Correction: Physics + Hybrid Learning Model

Doubles or triples the forecasting skill of US operational dynamical model (CFSv2)

Contiguous U.S. Performance (2010-2020)

		Average $\%$ Skill			
		Temperature		Precipitation	
Group	Model	weeks 3-4	weeks 5-6	weeks 3-4	weeks 5-6
Baselines	Debiased CFSv2	24.94	19.12	5.77	4.28
	Persistence	10.64	6.22	8.31	7.41
Learning	AutoKNN	12.43	8.56	6.66	5.93
	Informer	0.55	0.01	6.15	5.86
	LocalBoosting	14.44	12.69	10.82	9.72
	MultiLLR	24.5	16.68	9.49	7.97
	N-BEATS	9.21	4.16	5.48	4.46
	Prophet	20.21	19.78	13.51	13.41
	Salient 2.0	11.24	11.77	10.11	9.99
ABC	Climatology++	18.61	18.87	15.04	14.99
	CFSv2++	32.38	29.19	16.34	16.09
	Persistence++	32.4	26.73	13.38	9.77
	ABC	33.58	30.56	18.94	18.35

 Takeaway: ABC outperforms operational US model (CFSv2) and 7 state-of-the-art machine learning and deep learning methods from the

Explaining ABC Improvements

U.S. Precipitation, weeks 3-4 (ABC-ECMWF vs. Debiased ECMWF)

Global importance of each variable in explaining skill improvement

Positive impact of HGT 500 PC1 on ABC skill improvement

Most likely in decile 1: features positive Arctic Oscillation pattern
Least likely in decile 9: features opposite phase Arctic Oscillation

Forecast with largest HGT 500 PC1 impact in decile 1

Forecasts of Opportunity

- Idea: Apply ABC opportunistically when multiple explanatory variables are in high-impact state and use baseline debiased dynamical model otherwise
- Effectively defining windows of opportunity based on variables observable at forecast issuance date

Probabilistic forecasts

Probability

Ranked probability skill score

$$RPS = \frac{1}{ncat - 1} \sum_{icat=1}^{ncat} (Pcumfct_{icat} - Pcumobs_{icat})^2 \qquad RPSS = 1 - \frac{RPS_{fct}}{RPS_{cli}}$$

$$RPSS = 1 - \frac{\frac{1}{ncat - 1} \sum_{icat=1}^{ncat} (Pcumfct_{icat} - Pcumobs_{icat})^{2}}{\frac{1}{ncat - 1} \sum_{icat=1}^{ncat} (Pcumcli_{icat} - Pcumobs_{icat})^{2}}$$

ABC probabilistic forecasts

Online Learning

Regret measures the ensemble performance.

Regret measures the gap between the accuracy of the real-time ensemble and the model that would have been best in retrospect.

We want ensembling strategies that have provably small regret.

New algorithms with optimal regret guarantees We introduce DORM+: Delayed Optimistic Online Mirror Descent

Last observed loss subgradient $\mathbf{g}_{t-D} \in \partial \ell_{t-D}(\mathbf{w}_{t-D})$ $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbf{W}} \langle \mathbf{g}_{t-D} + \mathbf{h}_{t+1} - \mathbf{h}_t, \mathbf{w} \rangle + \mathcal{B}_{\mathbf{w}}(\mathbf{w}, \mathbf{w}_t) \langle \mathbf{w}, \mathbf{w}_t \rangle_{\psi(\mathbf{w}) - \psi(\mathbf{u}) - \langle \nabla \psi(\mathbf{u}), \mathbf{w} - \mathbf{u} \rangle}$ Ensemble weights Hint vector: Estimate of future and missed feedback $\mathbf{g}_{t-D+1:t+1}$ The regularization strength λ controls the balance of exploration and exploitation.

DORM+ optimally tunes λ to achieve task-targeted exploration.

The first algorithm to achieve optimal $O(\sqrt{(D+1)T})$ regret growth while adaptively tuning λ for online learning with optimism and delay.

Ensembling methods

Conservative choice State-of-the-art approaches

Online learning Adapt weights online.

Aggressive choice Human-chosen model weights

Ranked probability score - temperature

RPS

ABC

Online learning - temperature

U.S. Temperature, weeks 3 to 4 01/01/2005 to 31/12/2016

Summary

- ABC can double or triple forecasting accuracy of operational models
- Forecast improvements can be explained by common variables using Cohort Shapley, which can also be used to decide whether to use ABC or traditional debiasing
- Adaptive ensembling is only successful, when skills of model predictions differ sufficiently from each other

Thank you!

Support from:

Online learning with optimism and delay

A general model for decision-making under uncertainty, composed of:

The decision-making objective is to control the growth of regret (versus strategies in the set U) by making plays from W that have low loss.

c.f. POMDP models: Actions = Plays. Rewards = Losses. Black-box loss generator instead of belief and transition function *T*. Provides robust, worst-case guarantees.

U.S. Temperature, weeks 3 to 4 (Gefs) 01/01/2005 to 31/12/2016

2010

2006

2008

2012

time

2014

2016

Gefs temp

ECMWF - temp

U.S. Temperature, weeks 3 to 4 (Ecmwf) 01/01/2005 to 31/12/2016

Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

• Can be used to correct any dynamical model

• Including leading model from European Centre for Medium-Range Weather Forecasts

Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

U.S. Temperature, weeks 5-6

• Can be used to correct any dynamical model

• Including leading model from European Centre for Medium-Range Weather Forecasts

ABC Reduces Systematic Model Bias

- Spatial distribution of model bias over the years 2018–2021
- CFSv2 = Climate Forecasting System v2, US operational dynamical model
- ECMWF = European Centre for Medium-Range Weather Forecasts, leading subseasonal model

Advancing Ensemble Subseasonal Forecasting with Machine Learning

Probabilistic ABC

- Forecast tercile probabilities
- Evaluate using Ranked Probability Skill Score (RPSS)

ABC Debiased ECMWF ECMWF

Optimistic online learning for adaptive model ensembling

- Learns task- and time-dependent model weights w_i
- Accounts for delayed feedback (Flaspohler et al., 2021)
- No hyperparameters to tune

With Sonja Totz, Genevieve Flaspohler, Judah Cohen, & Dara Entekhabi (MIT), Paulo Orenstein (IMPA), Arun Kumar & Yun Fan (CPC)

