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temperature

e Allocating water resources
* Managing wildfires

* Preparing for weather extremes e.g., droughts,
heavy rainfall, and flooding

* Crop planting, irrigation scheduling, and fertilizer
application

* Energy pricing

https://www.washingtonpost.com/business/2022/09/05/crops-climate-drought-food
https://www.nytimes.com/2019/03/21/climate/climate-change-flooding.html
White et al., 2017
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FORECAST SKILL

Weather forecasts
predictability comes from initial
atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources

Climate forecasts

excellent predictability comes primarily from
sea-surface temperature data

accuracy dependent on ENSO state
good
toilr m
poor
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Source: https://iri.columbia.edu/news/qga-subseasonal-prediction-project/



Motivation

Reasons for incorporating machine learning

Data Science and Machine Learning (ML) have a long
history in atmospheric science.

Processing much larger datasets with new ML
techniques could improve models and forecasts.

Still need to understand the underlying physics and
chemistry to select the data and methods: the machine
student needs an intelligent teacher.

While ML can be computationally expensive and hard
to interpret, it can also find new features and generate
new research questions.

Dynamical models have many shortcomings that can
be revealed and improved with the help of data
analysis.

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT




Adaptive Bias Correction (ABC)

Dynamical Model
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Adaptive Bias Correction: Physics + Hybrid Learning Model

Precipitation

Temperature
Weeks 3-4

Weeks 5-6
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* Doubles or triples the forecasting skill of US operational dynamical model (CFSv2)



Contiguous U.S. Performance (2010-2020)

Average % Skill

Temperature Precipitation
Group Model weeks 3-4  weeks 5-6  weeks 3-4  weeks 5-6
Baselines Debiased CFSv2 24.94 19.12 5.77 4.28
Persistence 10.64 6.22 8.31 7.41
Learning AutoKNN 12.43 8.56 6.60 5.93
Informer (.55 0.01 6.15 5.86
LocalBoosting 14.44 12.69 10.82 9.72
MultiLLR 24.5 16.68 9.49 7.97
N—BEATS 9.21 4.16 5.48 4.46
Prophet 2().21 19.78 13.51 13.41
Salient 2.0 11.24 11.77 10.11 9.99
ABC Climatology+-+ 18.61 18.87 15.04 14.99
CFSv2++ 32.38 29.19 16.34
Persistence++ 32~ 20.73 13.58
ABC 33.58 30.56 18.94
——

* Takeaway: ABC outperforms operational US model (CFSv2) and 7
state-of-the-art machine learning and deep learning methods from the



Explaining ABC Improvements

U.S. Precipitation, weeks 3-4 (ABC-ECMWF vs. Debiased ECMWF)

0.004 -

0.003 -

0.002

Variable importance

0.001 -

Global importance of each variable in explaining skill improvement



Positive impact of HGT 500 PC1 on ABC skill improvement
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* Most likely in decile 1: features positive Arctic Oscillation pattern
 Least likely in decile 9: features opposite phase Arctic Oscillation
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Forecasts of Opportunity

# High-impact % Forecasts High-impact skill (%) e ::E'i%h:d‘w:; ':%:’j;‘nizccttzzt;ss /’I
variables using ABC  ABC Debiased 0.4 = Opportunistic ABC on sl dakes //
0 or more 100.00 20.94 15.28 a
1 or more 95.93 20.99 14.84 =03 - 4
2 or more 80.62 22.29 13.12 S
3 or more 58.61  23.56 12.00 0.2- ———""\_
4 or more 31.82 24.72 8.18 3
5 or more 14.59 26.51 8.35 T e % //'
6 or more 6.46 29.72 10.55 0.1 e S il
7 or more 2.15 45.00 17.53

o 1 2 3 4 5 6 7

Minimum number of high-impact features

* |dea: Apply ABC opportunistically when multiple explanatory variables are
in high-impact state and use baseline debiased dynamical model otherwise

e Effectively defining windows of opportunity based on variables observable
at forecast issuance date



Probabilistic forecasts
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Ranked probability skill score

ncat
RPS = Z (Pcumfcticqr — Pcumobsicat)z RPSS =1 — RPSfCt
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ABC probabilistic forecasts

U.S. Temperature, weeks 3 to 4 (Ecmwf)
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Online Learning



Regret measures the ensemble performance.

Regret measures the gap between the accuracy of the real-time
ensemble and the model that would have been best in retrospect.

T T
RegretT — E ft (Wt) — inf E gt(U)
ucew
t=1 t=1
Real-time Total loss of best
forecasting loss single model

CRSV2++ Climatology++

i=1
w; >0, Vi € [d]

We want ensembling strategies that have provably small regret.

15



New algorithms with optimal regret

guara ntees
We introduce DORM+: Delayed Optimistic Online Mirror Descent

Last observed loss subgradient 8t—pD € ({%t—D(Wt—D) :
Bregman divergence

R\ -
L . A Bw(W, 11) —
w1 = argmin (g, p + hy1 — hy, w) + 5, (w WL P
Ensemble weights Hint vector: Estimate of future and missed feedbackSt— D+1:¢+1

The regularization strength A controls the balance of exploration and exploitation.

DORM+ optimally tunes \ to achieve task-targeted exploration.

The first algorithm to achieve optimal O(\/(D + 1)T) regret growth
while adaptively tuningA for online learning with optimism and delay.

16



Ensembling methods
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Ranked probability score - temperature

Traditional debiasing

ABC
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Online learning - temperature

U.S. Temperature, weeks 3 to 4
01/01/2005 to 31/12/2016
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U.S. Precipitation, weeks 5-6

Summary e
S 018 I
* ABC can double or triple forecasting accuracy of LN '
operational models e ————

U.S. Precipitation, weeks 3-4 (ABC-ECMWF vs. Debiased ECMWF)

* Forecast improvements can be explained by
common variables using Cohort Shapley, which
can also be used to decide whether to use ABC or o
traditional debiasing SRS
Online Learning - mean Ensemble  &_ .12
* Adaptive ensembling is only successful, when | \ l
skills of model predictions differ sufficiently from | | e
each other ‘ oo
240 260 280 I- :§§§
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Thank youl!

Support from:
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Online learning with optimism and delay

A general model for decision-making under uncertainty, composed of:

Loss R
Set of Plays Feedback

Generator Delay

(W.,U,L,L,D)

Set of Regret Optimistic Hint

Competitors Generator

The decision-making objective is to control the growth of regret (versus
strategies in the set U) by making plays from W that have low loss.

c.f. POMDP models: Actions = Plays. Rewards = Losses. Black-box loss generator
instead of belief and transition function T. Provides robust, worst-case guarantees.

23
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Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model
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0.00

U.S. Precipitation, weeks 3-4
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e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts
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Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

U.S. Temperature, weeks 3-4 U.S. Temperature, weeks 5-6
0.5 0.5
BN Dynamical B Dynamical
ABC ABC
0.4 0.4
0.3 1 I I
o2 W o 1
0.0
CCSM4 CFSv2GEOS_V2pl NESM FIMrlpl GEFS GEM ECMWF ccsMa CFSv2 GEOS V2pl NESM ECMWF

e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts



ABC Reduces Systematic Model Bias

Temperature Temperature
Weeks 1-2 Weeks 3-4 Weeks 5-6

ECMWF

ABC-ECMWF

model bias ((C) model bias (‘C)

e Spatial distribution of model bias over the years 2018-2021
* CFSv2 = Climate Forecasting System v2, US operational dynamical model
* ECMWEF = European Centre for Medium-Range Weather Forecasts, leading subseasonal model



Advancing Ensemble Subseasonal Forecasting with Machine Learning
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Optimistic online learning for adaptive model ensembling

* Learns task- and time-dependent model weights w;

e Accounts for delayed feedback (Flaspohler et al., 2021)

* No hyperparameters to tune - |
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With Sonja Totz, Genevieve Flaspohler, Judah Cohen, & Dara Entekhabi (MIT), Paulo Orenstein (IMPA), Arun Kumar & Yun Fan (CPC)



U.S. Temperature, weeks 3 to 4
01/01/2005 to 31/12/2016
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