

AMERICAN METEOROLOGICAL SOCIETY

Bulletin of the American Meteorological Society

EARLY ONLINE RELEASE

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/BAMS-D-17-0184.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

If you would like to cite this EOR in a separate work, please use the following full citation:

Klotzbach, P., S. Bowen, R. Pielke, and M. Bell, 2018: Continental United States Hurricane Landfall Frequency and Associated Damage: Observations and Future Risks. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-17-0184.1, in press.

© 2018 American Meteorological Society

<u>*</u>

1	Continental United States Hurricane Landfall Frequency and Associated Damage:
2	Observations and Future Risks
3	
4	Philip J. Klotzbach*
5	Department of Atmospheric Science
6	Colorado State University
7	Fort Collins CO 80523
8	
9	Steven G. Bowen
10	Aon Benfield
11	Chicago IL 60601
12	
13	Roger Pielke Jr.
14	University of Colorado
15	Boulder CO 80309
16	
17	Michael Bell
18	Department of Atmospheric Science
19	Colorado State University
20	Fort Collins CO 80523
21	St l
22	Submitted to the Bulletin of the American Meteorological Society
23	Date: 15 August 2017
	I

24	Revised: 30 November 2017
25	Second Revision: 1 February 2018
26	
27	*Corresponding author address: Philip J. Klotzbach, Department of Atmospheric Science,
28	Colorado State University, Fort Collins, CO 80523 email: philk@atmos.colostate.edu
29	

30	Capsule Summary
31	While United States landfalling hurricane frequency or intensity shows no significant trend since
32	1900, growth in coastal population and wealth have led to increasing hurricane-related damage
33	along the United States coastline.
34	
35 36 37 38	Keywords Hurricanes, tropical cyclones, climate change, FEMA, flood insurance
39	

Abstract

41	Continental United States (CONUS) hurricane-related inflation-adjusted damage has
42	increased significantly since 1900. However, since 1900 neither observed CONUS landfalling
43	hurricane frequency nor intensity show significant trends, including the devastating 2017 season.
44	Two large-scale climate modes that have been noted in prior research to significantly
45	impact CONUS landfalling hurricane activity are El Niño-Southern Oscillation on interannual
46	timescales and the Atlantic Multi-decadal Oscillation on multi-decadal timescales. La Niña
47	seasons tend to be characterized by more CONUS hurricane landfalls than do El Niño seasons,
48	and positive Atlantic Multi-decadal Oscillation phases tend to have more CONUS hurricane
49	landfalls than do negative phases.
50	Growth in coastal population and regional wealth are the overwhelming drivers of
51	observed increases in hurricane-related damage. As the population and wealth of the US has
52	increased in coastal locations, it has invariably led to the growth in exposure and vulnerability of
53	coastal property along the US Gulf and East Coasts. Unfortunately, the risks associated with
54	more people and vulnerable exposure came to fruition in Texas and Florida during the 2017
55	season following the landfalls of hurricanes Harvey and Irma. Total economic damage from
56	those two storms exceeded \$125 billion. Growth in coastal population and exposure is likely to
57	continue in the future, and when hurricane landfalls do occur, this will likely lead to greater
58	damage costs than previously seen. Such a statement is made recognizing that the vast scope of
59	damage from hurricanes often highlight the effectiveness (or lack thereof) of building codes,
60	flood maps, infrastructure, and insurance in at-risk communities.

1. Introduction

64	Among weather-related disasters, landfalling tropical cyclones (TCs) are a leading cause
65	of economic damage in the continental United States (CONUS) and globally. ¹ The very active
66	and destructive 2017 Atlantic hurricane season resulted in an excess of \$125 billion in damage in
67	the CONUS (Aon Benfield 2018). Landfalling TCs also accounted for eight of the top ten
68	costliest United States (US) insured losses from natural disaster events according to Aon
69	Benfield through 2017. CONUS landfalling hurricane damage has risen dramatically since the
70	start of the 20th century after adjusting historical losses for inflation (Pielke et al. 2008).
71	However, because property and wealth exposed to hurricane impacts accumulates in exposed
72	coastal locations, inflation adjustments alone cannot entirely capture the increased potential for
73	losses if those same storms were to impact at today's levels of development.
74	Several studies have examined trends in CONUS hurricane losses since 1900 by
75	normalizing historical damage to modern-day values by adjusting for inflation, population and
76	various individual wealth metrics, as well as other factors (Pielke and Landsea 1998; Pielke et al.
77	2008; Schmidt et al. 2009; Nordhaus 2010; Bouwer and Wouter Botzen 2011; Neumayer and
78	Barthel 2011; Barthel and Neumayer 2012). These studies have typically shown no significant
79	trend in CONUS landfalling normalized damage once societal change is considered (Pielke et al.
80	2008). This result is expected as landfalling CONUS hurricanes have not increased in frequency
81	or intensity since 1900 through 2017 (as shown below), meaning that an unbiased normalized
82	loss record would be expected to show the same (lack of) trend. Independent climate and

¹ <u>http://www.aonbenfield.com/catastropheinsight</u>

83	economic data indicate that the primary source of the increase in damage caused by hurricanes in
84	recent decades is due to increases in exposure along the United States East and Gulf Coasts
85	(Pielke et al. 2008; Bouwer and Wouter Botzen 2011).
86	This manuscript has three primary themes. Following a discussion of data sources, we
87	examine trends in both CONUS landfalling hurricanes as well as CONUS normalized damage
88	from 1900-2017. We then re-examine the relationship between El Niño - Southern Oscillation
89	(ENSO) and CONUS landfalling hurricanes (Bove et al. 1998; Klotzbach 2011) along with the
90	relationship with associated normalized damage (Pielke and Landsea 1998). This section also
91	updates the impact that the phase of the Atlantic Multi-decadal Oscillation (AMO) ² has on
92	CONUS landfalling hurricanes and damage (Landsea et al. 1999). The manuscript then examines
93	potential future CONUS landfalling hurricane damage through analyses of current and projected
94	trends in coastal exposure and finishes with a discussion and conclusions.
95	
96	2. Data and Methodology
97	
98	CONUS hurricane landfall data are extracted from the Atlantic Oceanographic and
99	Meteorological Laboratory's (AOML) website from 1900-1960 and 1983-2016
100	(http://www.aoml.noaa.gov/hrd/hurdat/UShurrs_detailed.html). For the period from 1961-1982
101	where the National Hurricane Center's (NHC's) hurricane database (HURDAT2) reanalysis
102	project (Landsea and Franklin 2013) is not yet complete, we calculated hurricane landfall

² We note that there remains vigorous scientific discussion as to the origins of the AMO, with some arguing that the Atlantic Meridional Overturning Circulation is the primary driver (Grossmann and Klotzbach 2009; Yan et al. 2017), while others argue that sulfate aerosols (Booth et al. 2012) or stochastic mid-latitude atmospheric forcing play a greater role (Clement et al. 2015).

103 locations directly from nurricane tracks plotted from HURDA12 with landfall in
--

104 constrained to be the same Saffir-Simpson scale category as listed on the AOML website:

105 <u>http://www.aoml.noaa.gov/hrd/hurdat/All_United States_Hurricanes.html</u>. Landfall locations

- and intensities for the 2017 Atlantic hurricane season were taken from NHC operational
- 107 advisories. Multiple landfalls by an individual TC were counted separately as long as they
- traveled over the open ocean for at least 100 miles between their individual landfalls. In the case
- 109 of 2017, all three CONUS hurricanes (Harvey, Irma and Nate) made multiple landfalls, but the
- second landfall was less than 100 miles from the first one, and consequently, each storm was
- 111 counted once in this analysis.
- Base damage adjusted for inflation and normalized damage estimates for historical
 CONUS landfalling TCs were taken from the ICAT Damage Estimator

114 (http://www.icatdamageestimator.com/) which is based on Pielke et al. (2008). Damage values in

the ICAT database through 2016 were adjusted to 2017 dollars using the methodology of Pielke

- 116 et al. (2008). The 2017 damage total was taken from individual storm estimates determined by
- 117 Aon Benfield (Aon Benfield 2018).
- 118 The definition of ENSO events used here is the August-October-averaged Oceanic Niño
- 119 Index (ONI). The ONI is the official index used by the National Oceanic and Atmospheric
- 120 Administration (NOAA) to define ENSO events. We calculate the ONI from the NOAA
- 121 Extended Reconstructed SST version 4 (Huang et al. 2015). The August-October ONI is defined
- to be the August-October average of Niño 3.4 (5°S-5°N, 170°-120°W; Barnston et al. 1997) sea
- 123 surface temperature (SST) anomalies calculated from 30-year centered base periods updated
- 124 every five years. Any August-October-averaged ONI greater than 0.5°C was classified as El
- 125 Niño, an anomaly less than -0.5°C was classified as La Niña, and all other seasons were

126	classified as ENSO neutral. A total of 29 years were classified as El Niño, 29 years were
127	classified as La Niña, and the remaining 60 years were classified as ENSO neutral.
128	Our definition of the AMO classified seasons using the same approach used in Klotzbach
129	and Gray (2008) whereby 1900-1925 and 1970-1994 were classified as negative AMO periods
130	while 1926-1969 and 1995-2017 were classified as positive AMO periods. There is considerable
131	uncertainty as to whether the Atlantic has in recent years reverted to a negative AMO phase
132	(Klotzbach et al. 2015), but given the very active 2017 Atlantic hurricane season that has just
133	occurred, we prefer to extend the positive AMO phase through to the present recognizing that
134	such a classification remains provisional. However, the results displayed for the AMO
135	throughout the manuscript would not show significant differences were the 2013-2017 period to
136	be reclassified as a negative AMO phase. ³
136 137	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage
136 137 138	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be
136 137 138 139	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer
136 137 138 139 140	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer to those which either exceeded or failed to exceed the 5% level. Each year was counted as an
136 137 138 139 140 141	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer to those which either exceeded or failed to exceed the 5% level. Each year was counted as an individual degree of freedom, since there is little auto-correlation between one year's Atlantic
136 137 138 139 140 141 142	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer to those which either exceeded or failed to exceed the 5% level. Each year was counted as an individual degree of freedom, since there is little auto-correlation between one year's Atlantic hurricane activity (r=0.11) or damage (r=0.22) and that experienced the following year. Monte
136 137 138 139 140 141 142 143	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer to those which either exceeded or failed to exceed the 5% level. Each year was counted as an individual degree of freedom, since there is little auto-correlation between one year's Atlantic hurricane activity (r=0.11) or damage (r=0.22) and that experienced the following year. Monte Carlo simulations were conducted to determine differences in mean and median values between
136 137 138 139 140 141 142 143 144	be reclassified as a negative AMO phase. ³ Statistical significance for trends in both landfall frequency as well as normalized damage were evaluated using a t-test. All statistical significance tests must exceed a 5% level to be considered significant. For the remainder of the document, significant/insignificant trends refer to those which either exceeded or failed to exceed the 5% level. Each year was counted as an individual degree of freedom, since there is little auto-correlation between one year's Atlantic hurricane activity (r=0.11) or damage (r=0.22) and that experienced the following year. Monte Carlo simulations were conducted to determine differences in mean and median values between climate modes and CONUS hurricane landfalls and damage. A total of 1000 random time series

³ For example, the average positive (negative) AMO number of CONUS landfalling hurricanes per year is 1.94 (1.53) when treating 2013-2017 as a continuation of a positive AMO phase, while the average number is 2.00 (1.50) when treating 2013-2017 as a new negative AMO phase.

146	118-year dataset. For example, in the case of both El Niño and La Niña, one thousand 29-year
147	time series of the full 118-year time series were drawn. If the observed value was either greater
148	than the 95 th percentile or less than the 5 th percentile of the randomly-drawn values, the
149	difference from the mean value of all seasons was said to be significant at the 5% level.
150	However, such simple statistics should be interpreted with caution as climate variables may or
151	may not exhibit stationarity, and the textbook notion of observations serving as a sample from a
152	population may not accurately represent out-of-sample climate processes (Saunders et al. 2017).
153	
154	3. Trends in Continental United States Landfalling Hurricanes and Normalized
155	Hurricane Damage
156	
157	We begin by examining the long-term trend in CONUS landfalling hurricanes and
158	damage since the start of the 20th century. Inflation-adjusted CONUS hurricane losses show a
159	significant increasing trend since 1900 (Fig. 1). However, there is an insignificant trend in
160	CONUS landfalling hurricanes from 1900-2017 (Fig. 2a). When we only examine hurricanes that
161	made landfall at major hurricane strength (Saffir-Simpson Category 3-5) (one-minute sustained
162	winds >=96 kt), which are responsible for greater than 80% of all normalized tropical cyclone-
163	related damage (Pielke and Landsea 1998), we find a similar insignificant trend (Fig. 2b). We
164	therefore conclude that the large increase in observed hurricane-associated inflation-adjusted
165	CONUS damage (Pielke et al. 2008) is primarily due to increases in exposure as opposed to
166	increasing frequency or intensity of hurricanes making CONUS landfall.
167	We next employ the same methodology used in Pielke et al. (2008) to examine trends in
168	CONUS hurricane damage since 1900 normalized to 2017 values, noting that there is currently

169	an effort underway by Pielke and colleagues to comprehensively update Pielke et al. (2008). The
170	long-term normalized hurricane damage record also shows no significant trend. One of the most
171	notable items is the extreme year-to-year variability in the time series (Fig. 3). For example, the
172	most damaging normalized CONUS landfalling hurricane is the Great Miami Hurricane of 1926
173	which is estimated to result in >\$210 billion in damage, were it to occur in 2017. If the
174	normalization is unbiased, then no significant trend in CONUS normalized hurricane damage
175	since 1900 is expected, consistent with no significant trend in landfalling hurricanes or major
176	hurricanes.
177	The fact that climate trends and normalization trends both show no significant increases
178	or decreases provides an indication that the normalization methodology is, in aggregate,
179	unbiased. ⁴ In other words, the adjustments to economic data result in a time series with statistical
180	properties that correspond with those of the climate time series, as would be expected from an
181	unbiased normalization. Climate data provide an independent check on the normalization time
182	series.
183	
184	4. Relationships between Large-Scale Climate Modes and Continental United
185	States Landfalling Tropical Cyclone Frequency and Damage
186	
187	a. ENSO
188	We next examine how ENSO is related to the frequency and intensity of CONUS
189	landfalling hurricanes. About 1.75 times as many hurricanes make CONUS landfall in La Niña

⁴ It is of course possible that there are numerous biases that are insignificant, or cancel out each other. 10

190 seasons compared with El Niño seasons (Fig. 4a), although Jagger and Elsner (2006) found that 191 the strongest storms making CONUS landfall occur in El Niño seasons. We find similar ENSO-192 related modulation in both Florida and East Coast landfalls as well as Gulf Coast landfalls. The 193 La Niña/El Niño ratio is slightly larger for major hurricane landfalls than for all hurricane 194 landfalls (Fig. 4b), which is also in keeping with prior research (Bove et al. 1998; Klotzbach 195 2011), although we note that the increase in hurricane landfalls observed in La Niña seasons 196 from that observed in all seasons does not meet the 5% significance level. The stronger 197 modulation of stronger hurricane activity is in keeping with physical reasoning, since more 198 conducive environments are necessary to sustain major hurricane intensity as opposed to 199 Category 1-2 hurricane intensity. Gray (1984) documented that vertical wind shear in the 200 Caribbean and further east into the tropical Atlantic increased in El Niño seasons, creating conditions that were detrimental for TC formation and intensification. Tang and Neelin (2004) 201 202 showed that El Niño also increases upper tropospheric temperatures in the tropical Atlantic, 203 thereby stabilizing the air column and suppressing deep convection. El Niño has also been 204 shown to be associated with a weaker subtropical high, promoting recurvature of TCs and 205 reducing frequency of CONUS hurricane landfall (Colbert and Soden 2012).

CONUS normalized hurricane damage shows a large increase in La Niña seasons compared with El Niño seasons, with neutral ENSO conditions having larger median damage than El Niño seasons but less than La Niña seasons (Fig. 5a). Normalized damage in El Niño seasons is significantly less than the median damage incurred in all seasons, while the observed median damage in La Niña seasons is significantly more than the median damage incurred in all seasons. The reduction in normalized damage in El Niño seasons and the increase in normalized damage in La Niña seasons is significant for Florida and the East Coast. The significance level

213 of the reduction for Gulf Coast damage in El Niño is unable to be determined precisely as ~25% 214 of all Monte Carlo simulations for Gulf Coast damage returned a median damage of \$0. Note 215 that the combined Florida and East Coast and Gulf Coast median damage values do not sum to 216 the CONUS total in Figure 5, since median values are being plotted (as opposed to mean values). 217 Since 1900, a total of 37 years have had over \$10 billion in normalized damage. Only 218 four of those years were classified as El Niño seasons: 1965, 1969, 1972, and 2004. Two of 219 these seasons (1969 and 2004) would qualify as weak El Niño seasons using the current 220 operational definition of NOAA for ENSO strength as their ONI values were <1°C. Both 1965 221 and 1972 would qualify as strong El Niño seasons. As would be expected given the volatile 222 nature of the normalized damage time series, the standard deviation of the damage is much larger 223 than the median value (Fig. 5b). These conclusions are consistent with those of Pielke and 224 Landsea (1999) using 21 years of additional data.

225

226 *b. AMO*

227 Our focus now turns to the AMO (Goldenberg et al. 2001) and its relationship with 228 CONUS hurricane landfall frequency. Klotzbach and Gray (2008) demonstrated a significant 229 modulation in both basin-wide as well as Florida and East Coast landfalling hurricane frequency. 230 We find similar results, with a significant increase in both CONUS as well as Florida and East 231 Coast landfalling hurricanes in positive AMO phases (Fig. 6a) and a significant decrease in 232 negative AMO phases from the average of all hurricane seasons. Little signal is observed for 233 hurricanes making landfall along the Gulf Coast. This is likely due to different formation 234 mechanisms for Florida and East Coast versus Gulf Coast systems. Hurricanes making landfall in 235 Florida and along the East Coast often form from Cape Verde hurricanes or develop in the

Caribbean, which are areas where the AMO plays a significant role (Klotzbach and Gray 2008)
(Fig. 7). Hurricanes making landfall along the Gulf Coast can form from these mechanisms but
can also form in either the Bay of Campeche or in the Gulf of Mexico. TCs forming in the Gulf
of Mexico or in the subtropical Atlantic are not as significantly modulated by the AMO
(Goldenberg et al. 2001).

241 When examining CONUS major hurricane landfalls, we find a significant modulation 242 between positive and negative AMO phases for Florida and East Coast landfalls, while we 243 continue to find very little difference for the Gulf Coast (Fig. 6b). The difference in CONUS 244 landfalls between AMO phases also is not statistically significant. Median United States 245 normalized hurricane damage shows statistically significant modulations by the AMO, with ~9 246 times as much median damage in a positive AMO season compared with a negative AMO season 247 (Fig. 8a). The difference is also significant for Florida and the East Coast, with over \$800 248 million in median damage for Florida and the East Coast in a positive AMO compared with \$69 249 million in a negative AMO. While the differences in median damage are considerable for the 250 Gulf Coast as well (\$105 million for positive AMO vs. \$4 million in negative AMO), these 251 differences are not statistically significant. As was the case with ENSO, the standard deviation of 252 year-to-year normalized damage by AMO phase is quite large, indicating the high levels of 253 volatility in the normalized damage time series (Fig. 8b).

- 254
- 255

5. Background Factors for Continental United States Landfalling Hurricane

- 256
- *a) Population and Housing*

Damage

With the historical hurricane landfall and financial cost trends established, the focus can now shift towards the future and what trends may be experienced in the decades to come given observed socioeconomic and demographic shifts. Of particular interest to many sectors – including local, state, and federal government agencies as well as the insurance industry – is the continued pattern of population increases along coasts, and in turn, greater exposures to hurricanes.

Decadal data from the US Census Bureau from 1900 to 2010 shows that the population of the US grew from 132 million to 309 million, equal to an annual growth rate of 2.8%. However, when breaking the country into six distinct regions (Atlantic, Gulf Coast, Non-Coastal South, Midwest, West, Coastal West) (Fig. 9a), there are vastly different annual growth rates and total counts of residents since 1940 across each of these regions (Fig. 9b). This is particularly true during the past ~50 years. Partial decadal census data from 2010 to 2016 shows a continuation of these trends, with the US population now estimated at 323 million.

From 1970 to 2016, regional annual rates of growth were: West (3.9%), Gulf Coast

272 (2.7%), Coastal West (2.1%), Non-Coastal South (1.2%), Atlantic (0.8%), and Midwest (0.4%).

273 The national growth rate was 1.3%. When breaking down the data into raw totals, during the 47

274 years from 1970-2016, the actual population increase was as follows: Gulf Coast (+33.7 million),

Atlantic (+26.5 million), Coastal West (+25.1 million), West (+16.7 million), Midwest (+11.4

276 million), and Non-Coastal South (+6.4 million). This indicates that over 60 million more people

are now living in states directly exposed to TC landfall than in 1970.

In the years since the last official decadal census in 2010, an even more pronounced trend of coastal growth has occurred as some of the greatest rates of population growth were found in particularly vulnerable hurricane landfall locations. Of the top 20 fastest-growing

counties from 2010-2016, 13 were in hurricane-prone states – including 12 in either Florida or 281 282 Texas (Table 1). While much of the growth is occurring in ocean-bordering counties – which are most prone to high-impact damage at the point of TC landfall – a significant portion of growth is 283 284 found in areas further inland. This means that there is an increased risk of exposed inland 285 population and property to be impacted by hurricanes in their weakening or post-tropical phases. Recent examples such as Hurricane Irma (2017), Hurricane Sandy (2012) and Hurricane Ike 286 287 (2008) highlighted damage from high winds, prolonged rainfall and flooding, and severe 288 convective storms that were recorded well inland from the initial landfall location.

Unsurprisingly, the growth in population has directly correlated to an accelerated rate of exposure⁵ increase in these same areas. Further analysis using housing count data from the US Census Bureau shows that annual national housing units grew from 37 million (1940; first year of data collection) to 136 million (2016). This corresponds to a national average annual growth rate of 3.5% during the 77-year period.

294 Similar to the trends seen with population, there has been a wide spread of housing unit 295 growth rate and aggregated count among the six identified regions since 1970 (Fig. 10). The 296 regional annual rate of housing count growth was as follows: West (5.5%), Gulf Coast (3.8%), 297 Coastal West (2.4%), Non-Coastal South (2.2%), Atlantic (1.6%), and Midwest (1.3%). The 298 national rate during this time was 2.1%. The higher rate of growth for housing count versus population suggests that more people have bought multiple properties during this time, 299 300 increasing the volume and scope of exposure. In addition, US Census Bureau data shows that 301 there has been a slow decline in the average number of people per household from 3.14 in 1970

⁵ For this exercise, an "exposure" is defined as any public, residential, and commercial building or other physical structure as well as the wealth that it contains.

to 2.53 in 2016, providing another possible explanation for the increase in housing units. Further
studies have shown that household composition and structure has also continued to evolve over
time. For instance, the number of households identified as "Family" in US Census Bureau
surveys conducted between 1940 and 2010 has shown a decrease from 90% to 66%, while "NonFamily" households increased from 10% to 34% (Jacobson 2012).

When breaking down the data into raw totals, from 1970-2016, the actual regional
housing unit increase was Atlantic (+18.1 million), Gulf Coast (+16.3 million), Midwest (+11.0
million), Coastal West (+9.9 million), West (+7.7 million), and Non-Coastal South (+4.0
million). Most strikingly, the two most vulnerable regions for hurricane landfall – Atlantic and
Gulf Coast – combined for over 34 million new homes, or 51% of all new housing units during
this time.

313 One final metric regarding housing units examined here is the actual size of single-family 314 homes. Since the US Census Bureau first started collecting data on single-family home size, the 315 average home has grown from 1,660 square feet (1973) to 2,640 square feet (2016), or by 59%. 316 The two regions – as defined by the US Census Bureau – that have noted the greatest growth in 317 size are the Northeast and South (Fig. 11). Larger homes often require greater cost and more 318 material to build. When a hurricane makes landfall, the combined costs to rebuild or fix a home – 319 plus higher costs often associated with demand surge at construction and home retail sectors -320 often enhance the final damage bill beyond a home's original value.

An important point regarding housing unit exposure and financial losses in TC-prone
areas is the quality of construction and efficiency of building codes. Damage assessments
conducted by one of this paper's authors (S. Bowen) following Hurricanes Harvey, Irma, and
Maria in 2017 found that structures either built to modernized code and/or with proper elevation

325 in areas identified in the most current FEMA flood zones often reported minimal damage. In 326 Texas, the worst flood damage from Harvey often occurred to older-built structures constructed 327 at ground level; while in Florida, structures built prior to current stringent codes developed after 328 Hurricane Andrew (1992) performed much more poorly in areas where Irma's radius of 329 maximum winds occurred. Many other studies have delved more deeply into the positive impact 330 of improved building codes over time with respect to hurricane-force winds, notably in Florida 331 (Done 2017). Simply put, when homes and structures are built properly to recommended 332 modernized guidelines in TC or flood-risk areas, the magnitude of damage can be reduced. 333 Future work with academia and private sector groups will prove critical to continued 334 improvements in future building codes and their enforcement. One particular private sector 335 group conducting such studies, the Insurance Institute for Business and Home Safety (IBHS), is 336 an insurance industry organization that focuses entirely on independent scientific research to 337 "identify and promote the most effective ways to strengthen homes, businesses and communities against natural disasters and other causes of loss".⁶ 338

339

340 *b) Wealth*

Another data metric highlighting the expectation of greater future TC-related catastrophe
losses is the general increase in wealth. Using available data from the US Bureau of Economic
Analysis (BEA; 1980-2016), nationwide Gross Domestic Product (GDP) has trended upwards at
an annual average of 2.8%. Using the "real" inflation-adjusted BEA dataset, with losses

⁶ The Insurance Institute for Business and Home Safety (IBHS), headquartered in Tampa, FL, has an entire research center in Richburg, SC dedicated to testing residential and commercial construction materials, practices and systems.

345 indexed/chained to 2009 dollars, the BEA cites GDP growth from \$6.1 trillion (1987) to \$16.3 346 trillion (2016). Index/chained datasets help provide a more accurate picture of the economy and 347 better capture changes in spending patterns and prices (Landefeld et al 2003). Similar to 348 population count and exposure growth, the increases in GDP are more pronounced in certain 349 states and regions of the country. For this study, we are particularly interested in the performance 350 of GDP growth since the start of the most recent positive AMO phase in 1995 (Fig. 12). 351 The breakout of regional growth during the 22-year timeframe included Coastal West 352 (+3.3%), Gulf Coast (+3.2%), West (+3.1%), Atlantic (+2.5%), Non-Coastal South (+2.5%), and 353 the Midwest (+2.0%). The national average was 2.7%. When focusing specifically on three states 354 historically prone to landfall events, we find that the annual rate of growth is higher than the US 355 average: Texas (+4.0%), North Carolina (+2.9%), and Florida (2.8%). This further supports the 356 claim that the accelerated economic growth in these states would additionally lead to more 357 expensive damage and rebuilding costs. The population, housing, and wealth dataset analyses 358 put into strong context the current and future TC risk, and are essential data points for the many

360

359

361 *c)* Insurance

362 Beyond analyzing the overall economic cost of TCs in the US, another important measure 363 that helps explain the growth of exposure, population and wealth are the claims paid by public 364 and private insurance entities. Insured losses are the portion of economic damage that is covered 365 by insurance. A public insured loss is identified as a claim paid via the Federal Emergency 366 Management Agency's National Flood Insurance Program (NFIP) or the US Department of

public and private agencies that are responsible to warn, protect and assist in recovery.

367 Agriculture's Risk Management Agency crop insurance program. Private insured losses are368 claims paid directly by corporate, for-profit entities.

369 Losses resulting from TC damage did not become significant for the insurance industry in 370 the US until the 1950s (Fig. 13). This coincided with the first introduction of homeowners 371 insurance in September 1950 by the Insurance Company of North America in which a singular 372 policy would protect against "loss caused by fire, theft, lightning, wind, explosion, hail, riot, 373 vehicle damage, vandalism and smoke" (Carr 1967). Hurricanes Carol and Hazel – both of which 374 led to notable damage across the Northeast and Mid-Atlantic – combined to cause \$258 million 375 in nominal insurance payouts in 1954 (\$2.3 billion; inflation-adjusted to 2017). TC landfalls 376 often drive growth in property and casualty insurance take-up rates, defined as the percentage of 377 eligible people or properties in which active insurance policies are held, and premiums as 378 homeowners and businesses recognize the need to protect themselves should disaster strike. 379 In the next several decades, numerous significant hurricane landfalls such as Betsy 380 (1965), Hugo (1989), Andrew (1992), and the 2004/2005 hurricane seasons all led to greater 381 public and private insurance industry response to the peril. Hurricane Betsy caused extensive 382 damage in Louisiana and was thought to be the first nominal billion-dollar TC event in the US – 383 earning the name "Billion-Dollar Betsy" (Sugg 1966). Much of the damage was caused by 384 coastal and inland flood inundation. At the time, no defined flood insurance program existed, and 385 since private insurers viewed flood as too risky, the federal government established the National 386 Flood Insurance Program (NFIP) to provide an alternative to disaster assistance to meet the 387 escalating costs of home, building and content repairs (FEMA 2002). It was often considered by 388 the public that wind was the primary threat from hurricanes, but Betsy helped change the narrative. Andrew, in particular, changed how the private insurance industry market viewed 389

hurricane risk, especially in the state of Florida. Some of the profound changes that Andrew
made for the insurance industry included more carefully assessed and managed coastal exposure,
greater use of global reinsurance capital (reinsurance can be simply defined as insurance for
insurance companies), major growth in the sophistication and usage of catastrophe modeling, and
increased focus on modernized and enforced building codes (McChristian 2012).

395 At the end of 2016, there were roughly 5.1 million NFIP active policies in place in the 396 US, the fewest number since 2005. By the start of the 2017 Atlantic hurricane season, that total 397 had dipped slightly below 5.0 million. Historically, there was a gradual rise in policies from the 398 late 1970s into the late 2000s following notable hurricane landfalls (Fig. 14a). With an extended 399 stretch of lessened hurricane landfalls (and no major (Category 3+) hurricane landfalls in more 400 than a decade) (Hall and Hereid 2015), there was a steady drop in national NFIP coverage as 401 well as total insured value (TIV) (Fig. 14b) prior to the 2017 season. State-level data from 402 FEMA indicates that the number of NFIP policies often increase following major events. Following the 2004/2005 seasons, the number of NFIP "earned contract counts" in Florida 403 404 increased from 1.28 million in 2004 to a peak of 1.51 million in 2007. That number dropped to 405 under 1.25 million by 2016.

With costly coastal exposures continuing to increase along the Gulf Coast and East Coast,
this enhances the risk of greater spikes in catastrophe loss on an economic basis when the next
hurricanes come ashore. For NFIP, flood payout spikes coincide with hurricane landfalls (Fig.
14c).

With more housing units and fewer NFIP policies in place, this leads to the likelihood of
a greater portion of the economic cost not being covered by insurance during future events. A
large portion of hurricane damage is often flood-related, and in the case of 2017's Hurricane

413 Harvey, only 30% of that storm's impacts – estimated USD100 billion economic loss – were 414 covered by insurance given high coastal and inland flood inundation throughout southeast Texas 415 (Aon Benfield 2018). Less than 20% of homeowners in Texas' Harris County had active NFIP 416 policies in place at the time of landfall, and given Harvey's remarkable flood footprint, much of 417 the damage occurred in areas outside of the demarcated 100 or 500-year flood zones⁷. To put 418 recent NFIP trends into perspective, we use the state of Florida as an example. At the end of 419 2011, Florida had active NFIP policies in place with a total insured value of \$471 billion. By the 420 middle of 2017, a decline in active policies also coincided with TIV dropping to \$422 billion 421 despite hundreds of thousands of new single-family homes being built during that time. Table 2 422 provides regional breakouts of 2017 NFIP policies and TIV.

423 Using data as of early 2017, 14 of the top 20 states receiving the greatest amount of NFIP 424 payouts are found in ocean-bordering states prone to hurricane landfall (Fig. 15). For greater 425 context, the five Gulf Coast states have received more than 60% (or \$34.5 billion) of all nominal 426 NFIP payouts. The payouts are somewhat unsurprising given that more than 84 percent - or 427 nearly 4.2 million – of all NFIP policies currently in place are found in the Gulf Coast and 428 Atlantic. The TIV of these active policies in the Gulf Coast and Atlantic covers \$1.05 trillion 429 (85%) in residential and commercial property assets. Whether fully insured or not, this further 430 highlights the growing risk in these states given the tremendous aggregated value of properties 431 located in hurricane-prone locations.

432

These data strongly suggest that the combination of increased population, greater

433 exposure, the quality of building construction and further modifications of building codes have –

⁷ To view address-level FEMA flood zone mapping, visit the FEMA Flood Map Service Center: https://msc.fema.gov/portal/search

434	and will continue – to play a significant role in rising damage associated with TCs in the
435	CONUS. Any increase in landfalling TC frequency or intensity (e.g., Knutson et al. 2010, Walsh
436	et al. 2015) would expectedly combine with these socioeconomic and demographic factors to
437	cause even greater losses.
438	
439	6. Discussion and Conclusions
440	
441	We have investigated trends in CONUS hurricane activity since 1900 and found no
442	significant trends in landfalling hurricanes, major hurricanes or normalized damage, consistent
443	with what has been found in previous studies. CONUS landfalling hurricane activity is, however,
444	influenced by El Niño-Southern Oscillation on the interannual timescale and by the Atlantic
445	Multi-decadal Oscillation on the multi-decadal timescale.
446	Despite a lack of trend in observed CONUS landfalling hurricane activity since 1900,
447	large increases in inflation-adjusted hurricane-related damage have been observed, especially
448	since the middle part of the 20th century. We demonstrate that this increase in damage is due
449	strongly to societal factors, namely increases in population and wealth along the US Gulf and
450	East Coasts.
451	These findings have practical significance. Prior to the very active and costly 2017
452	season, the CONUS enjoyed an eleven-year major hurricane drought (Hall and Hereid 2015;
453	Hart et al. 2016), and during this period, there were sizable growth patterns in coastal population,
454	vulnerable coastal exposures, housing size, and nominal wealth in the most hurricane-prone areas
455	of the country.

456 When the major hurricane drought came to an end in 2017, Texas and Florida recorded 457 aggregated economic damage losses in excess of \$125 billion. In total, economic damage in 458 CONUS during the 2017 season was among the costliest ever recorded on a nominal, inflation-459 adjusted and normalized basis. It is further expected that future catastrophe losses resulting from 460 landfalling storms will be even more financially significant for local, state and federal 461 government agencies and the insurance industry if proper steps are not taken to reduce the 462 current vulnerabilities of property and other exposures. The conclusion of greater future losses 463 stands regardless of any changes in future hurricane frequency or intensity associated with 464 changes in the climate behavior of hurricanes. Even if future hurricane frequency were to lessen, 465 even one storm in an otherwise quiet year can result in unprecedented damage (e.g., Hurricane 466 Andrew in 1992).

Losses from future hurricanes have significant potential to dwarf those of the past based on societal change alone. Event losses will be even greater with potential increases in storm intensity (Knutson et al. 2010, Walsh et al. 2015) as well as flood-related impacts associated with an accelerated rate of sea level rise (Mousavi et al. 2011) and/or increased amounts of rainfall (Emanuel 2017). This highlights the continued importance of modernized and consistent building codes across hurricane-prone states, updated flood maps, and improved coastal/inland infrastructure given assumed impacts in the future.

474

475 Acknowledgments
476 We would like to thank the two anonymous reviewers as well as the editor, Ed Zipser, for
477 helpful comments that significantly improved the manuscript. PJK would like to acknowledge
478 financial support from the G. Unger Vetlesen Foundation. MMB was supported by the Office of
479 Naval Research award N000141613033 and National Science Foundation award AGS-1701225.

480 481	References
482	Aon Benfield, 2018: Weather, Climate and Catastrophe insight: 2017 Annual Report, 56 pp.
483	Available online at http://thoughtleadership.aonbenfield.com/Documents/20180124-ab-
484	if-annual-report-weather-climate-2017.pdf.
485	Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-
486	related SST region in the equatorial Pacific. AtmosOcean, 35, 367-383.
487	Barthel, F., and E. Neumayer, 2012: A trend analysis of normalized insurance damage from
488	natural disasters. Climatic Change, 113, 215-237.
489	Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81,
490	1328.
491	Booth, B. B. B., N. J. Dunstone, P. R. Halloran, R. Andrews, and N. Bellouin, 2012: Aerosols
492	implicated as a prime driver of twentieth-century North Atlantic climate variability.
493	Nature, 484 , 228-232.
494	Bouwer, L. M., & W. J. Wouter Botzen, 2011: How sensitive are US hurricane damages to
495	climate? Comment on a paper by WD Nordhaus. Climate Change Economics, 2, 1-7.
496	Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O'Brien, 1998: Effect of El Niño on
497	United States landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 2477-2482.
498	Carr, William H. A, 1967: Perils, Named and Unnamed: The story of the Insurance Company of
499	North America. New York: McGraw-Hill, 424 pp.
500	Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, B. Stevens, 2015:
501	The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350,
502	320-324.

- 503 Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical
 504 cyclone tracks. *J. Climate*, 25, 657-673.
- 505 Done, J. M., K. Simmons, and J. Czajkowski, 2017: Effectiveness of the Florida building code to
- 506 hurricane wind field parameters. ASCE-ASME Journal of Risk and Uncertainty in
- 507 Engineering Systems, Part A: Civil Engineering, 32 pp. Available online at
- 508 http://opim.wharton.upenn.edu/risk/library/WP201701-Done-Simmons-Czajkowski.pdf.
- 509 Emanuel, K. E., 2017: Assessing the present and future probability of Hurricane Harvey's
- 510 rainfall. Proc. Nat. Academ. Sci., doi: 10.1073/pnas.1716222114.
- 511 Federal Emergency Management Agency, 2002. Program Description: National Flood Insurance
- 512 Program. FEMA, 41 pp. Available online at <u>https://www.fema.gov/media-library-</u>
- 513 <u>data/20130726-1447-20490-2156/nfipdescrip_1_.pdf</u>.
- 514 Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent
- 515 increase in Atlantic hurricane activity: Causes and implications. *Science*, **293**, 474-479.
- 516 Gray, W. M., 1984: Atlantic seasonal hurricane frequency, Part I: El Niño and 30 mb quasi-
- 517 biennial oscillation influences. *Mon. Wea. Rev.*, **112**, 1649-1668.
- 518 Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural
- 519 variability and their driving mechanisms. J. Geophys. Res, **114**, D24107, doi:
- 520 10.1029/2009JD012728.
- Hall, T. R., and K. Hereid, 2015: The frequency and duration of US hurricane droughts. *Geophy. Res. Lett.*, 42, 3482-3485.
- 523 Hart, R. E., D. R. Chavas, and M. P. Guishard, 2016: The arbitrary definition of the current
- 524 Atlantic major hurricane landfall drought. *Bull. Amer. Meteorol. Soc.*, **97**, 713-722.

525	Huang, B., V. F. Banzon, E. Freeman, J. Lawrimore, W. Liu, T. C. Peterson, T. M. Smith, P. W.
526	Thorne, S. D. Woodruff, and HM. Zhang, 2015: Extended reconstructed sea surface
527	temperature version 4 (ERSST.v4): Part I: Upgrades and intercomparisons. J. Climate,
528	28, 911-930.

- 529Jacobson, L.A., Mather M., Dupuis, G., 2012: Household Change in the United States.
- 530 *Population Reform Bureau*. Available online at <u>http://www.prb.org/pdf12/us-household-</u>
 531 <u>change-2012.pdf</u>
- Jagger, T.H. and J.B. Elsner, 2006: Climatology models for extreme hurricane winds near the
 United States. *J. Climate*, 19, 3220–3236.
- Klotzbach, P. J., 2011: El Niño-Southern Oscillation's impact on Atlantic basin hurricanes and
 US landfalls. *J. Climate*, 24, 1252-1263.
- 536 ____, and W. M. Gray, 2008: Multi-decadal variability in North Atlantic tropical cyclone activity.
 537 *J. Climate*, **21**, 3929-3935.
- 538 ____, W. M. Gray, and C. T. Fogarty, 2015: Active Atlantic hurricane era at its end? *Nature*539 *Geosci.*, 8, 737-738.
- 540 Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P.

541 Kossin, A. K. Srivastava, and M. Sugi, 2010: Tropical cyclones and climate change.
542 *Nature Geosci.*, 3, 157-163.

- 543 Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and
- 544 presentation of a new database format. *Mon. Wea. Rev.*, **141**, 3576-3592.
- 545 ____, R. A. Pielke Jr., A. M. Mestas-Nuñez, and J. A. Knaff, 1999: Atlantic basin hurricanes:
- 546 Indices of climate change. *Climatic Change*, **42**, 89-129.

- 547 Landefeld, J.S., Moulton, B. R., Vojtech, C.M., 2003: Chained-Dollar Indexes: Issues, Tips on
- 548 Their Use and Upcoming Changes. US Bureau of Economic Analysis. Available online at

- Schmidt, S., C. Kemfert, and P. Höppe, 2009: The impact of socio-economics and climate
 change on tropical cyclone losses in the USA. *Regional Environ. Change*, 10, 13-26.
- 571 Sugg, A. L., 1966: The hurricane season of 1965. *Mon. Wea. Rev.*, **94**, 183-191.
- 572 Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric
- 573 warming. *Geophys. Res. Lett.*, **31**, L24204, doi: 10.1029/2004GL021072.
- Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes
 missing from the HURDAT database (1878-1965) using ship track density. *J. Climate*,
 24, 1736-1746.
- 577 Walsh, K. J., J. L. McBride, P. J. Klotzbach, S. Balachandran, S. J. Camargo, G. Holland, T. R.
- 578 Knutson, J. Kossin, T.-C. Lee, and A. Sobel, 2015: Tropical cyclones and climate change,
 579 *WIREs Climate Change*, doi: 1002/wcc.371.
- 580 Yan, X., R. Zhang, and T. R. Knutson, 2017: The role of Atlantic overturning circulation in the
- 581 recent decline of Atlantic major hurricane frequency. *Nature Communications*, **8**,
- 582 https://doi.org/10.1038/s41467-017-01377-8.

Table 1. Top 20 US counties in terms of population growth from 2010-2016. Bold-faced

584 counties are in states that are prone to hurricane impacts.

585

Ranking	County	State	2010	2011	2012	2013	2014	2015	2016	Raw #	%
										Change	Change
1	Harris	Texas	4,108,308	4,179,717	4,259,206	4,346,883	4,441,928	4,533,341	4,589,928	481,620	10.35%
2	Maricona	Arizona	3 825 616	3 870 806	3 942 959	4 011 219	4 083 931	4 161 637	4 242 997	417 381	8 78%
2	intericopu	- millonia	5,025,010	5,670,000	5,512,555	1,011,219	1,005,551	1,101,057	1,212,997		0.7070
3	Los Angeles	California	9,825,473	9,888,476	9,953,555	10,015,436	10,066,615	10,112,255	10,137,915	312,442	2.92%
4	San Diego	California	3,104,346	3,140,692	3,181,513	3,218,419	3,258,856	3,290,245	3,317,749	213,403	5.99%
5	King	Washington	1,937,786	1,972,444	2,008,763	2,045,874	2,078,886	2,114,256	2,149,970	212,184	9.11%
6	Bexar	Texas	1,723,006	1,755,342	1,788,530	1,822,056	1,858,749	1,895,482	1,928,680	205,674	10.01%
7	Miami-Dade	Florida	2,507,362	2,573,361	2,607,979	2,641,273	2,667,299	2,692,593	2,712,945	205,583	7.39%
8	Dallas	Texas	2,372,450	2,407,305	2,452,421	2,479,810	2,512,281	2,545,775	2,574,984	202,534	7.31%
9	Clark	Nevada	1,953,216	1,966,295	1,995,815	2,025,096	2,064,899	2,109,289	2,155,664	202,448	7.99%
10	Tarrant	Texas	1,817,687	1,848,347	1,882,352	1,912,501	1,944,512	1,981,410	2,016,872	199,185	9.01%
11	Riverside	California	2,202,226	2,236,146	2,264,919	2,291,452	2,322,455	2,352,892	2,387,741	185,515	6.84%
12	Travis	Texas	1,030,569	1,061,858	1,096,122	1,120,948	1,149,668	1,174,818	1,199,323	168,754	14.00%
13	Orange	Florida	1,148,716	1,169,806	1,202,048	1,225,366	1,253,631	1,284,864	1,314,367	165,651	11.85%
14	Broward	Florida	1,753,125	1,787,889	1,816,552	1,840,051	1,865,385	1,887,281	1,909,632	156,507	7.65%
15	Orange	California	3,017,647	3,053,884	3,084,935	3,112,576	3,134,438	3,156,573	3,172,532	154,885	4.60%
16	Collin	Texas	788,741	814,607	837,229	858,098	885,175	913,079	939,585	150,844	15.76%
17	Fort Bend	Texas	590,433	606,962	625,796	653,252	684,646	713,849	741,237	150,804	20.90%
18	Hillsborough	Florida	1,233,839	1,271,205	1,281,677	1,293,189	1,317,116	1,347,077	1,376,238	142,399	9.18%
19	1	1	1	1							1
	Wake	N. Carolina	906,949	929,208	952,296	973,920	997,897	1,021,974	1,046,791	139,842	12.68%

587 Table 2. NFIP policies in place by US region, the percentage of total NFIP policies in each US

region, the total insured value (TIV) of NFIP policies by US region and the percentage of total

589 insured value of NFIP policies by US region.

Region	Policies per Region	% NFIP Policies	TIV per Region (bn USD)	% TIV
Atlantic	1,231,707	25.0%	310	25.2%
Coastal West	310,757	6.3%	86	7.0%
Gulf Coast	2,925,909	59.4%	737	59.9%
Midwest	210,513	4.3%	42	3.4%
Non-Coastal South	80,969	1.6%	17	1.3%
West	160,696	3.3%	38	3.1%
Other US Territories	6,918	0.1%	1	0.1%
Total	4,927,469	100%	1023	100%

FIGURE CAPTIONS

595 Fig. 1. CONUS total inflation-adjusted economic losses from TC landfalls (1900-2017). The 596 dotted line represents the linear trend over the period. The p-value for the linear trend is <0.01597 indicating that the trend is significant. 598 Fig. 2. (a) CONUS landfalling hurricanes by year from 1900-2017 and (b) CONUS landfalling 599 600 major hurricanes by year from 1900-2017. The dotted lines represent linear trends over the 601 period. P-values for the linear trends are 0.33 (landfalling hurricanes) and 0.61 (landfalling 602 major hurricanes) indicating that neither of these trends are significant. 603 604 Fig. 3. Normalized CONUS landfalling hurricane damage from 1900-2017. The dotted line 605 represents the linear trend in CONUS hurricane normalized damage during the period of record. 606 The p-value for the linear trend is 0.86 indicating that the trend is not significant. 607 608 Fig. 4. (a) Mean annual CONUS landfalling hurricanes by ENSO phase from 1900-2017 and (b) 609 mean annual CONUS landfalling major hurricanes by ENSO phase from 1900-2017. 610 Differences that are significant at the 5% level are plotted with diagonal hatching. 611 612 Fig. 5. (a) Median and (b) standard deviation of annual CONUS normalized hurricane damage by 613 ENSO phase. Differences in the median that are significant at the 5% level are plotted with 614 diagonal hatching. The * in panel a in the El Niño bar in the Florida and East Coast column 615 indicates that this difference is significant at the 5% level (the hatching would not display since 616 the value is so small).

618	Fig. 6. (a) Mean annual CONUS landfalling hurricanes by AMO phase from 1900-2017 and (b)
619	mean annual CONUS landfalling major hurricanes by AMO phase from 1900-2017. Differences
620	that are significant at the 5% level are plotted with diagonal hatching.
621	
622	Fig. 7. (a) Named storm formation location for all Gulf Coast landfalling hurricanes from 1900-
623	2017, and (b) named storm formation location for all Florida and East Coast landfalling
624	hurricanes from 1900-2017.
625	
626	Fig. 8. (a) Median and (b) standard deviation of annual CONUS normalized hurricane damage by
627	AMO phase. Differences that are significant at the 5% level are plotted with diagonal hatching.
628	The * in panel a in the negative AMO bar in the Florida and East Coast column indicates that
629	this difference is significant at the 5% level (the hatching would not display since the value is so
630	small).
631	
632	Fig. 9. (a) CONUS map showing six regions as defined in this manuscript and (b) CONUS
633	decadal population by region (1940-2016).
634	
635	Fig. 10. CONUS decadal housing unit count (in millions) by region (1940-2016).
636	
637	Fig. 11. Average size of a CONUS single-family home by region as defined by the US Census
638	Bureau (1973-2016).
639	

640 Fig. 12. Real GDP growth by region (1995-2016).

642	Fig. 13. CONUS total inflation-adjusted insured losses from TC landfalls (1900-2017). The
643	dotted line represents the linear trend over the period. The p-value for the linear trend is <0.01
644	indicating that the trend is significant.
645 646	Fig. 14. (a) Annual NFIP policies in place (1978-2017), (b) total insured value of NFIP coverage
647	(nominal values, 1978-2017) and (c) calendar year NFIP payouts from 1978-2016 (2017 \$).
648 649 650	Fig. 15. Top 20 states for NFIP payouts (1978-2015; inflation-adjusted to 2017 USD).

Fig. 1. CONUS total inflation-adjusted economic losses from TC landfalls (1900-2017). The

653 dotted line represents the linear trend over the period. The p-value for the linear trend is <0.01

654 indicating that the trend is significant.

(a)

- Fig. 2. (a) CONUS landfalling hurricanes by year from 1900-2017 and (b) CONUS landfalling
- 658 major hurricanes by year from 1900-2017. The dotted lines represent linear trends over the
- 659 period. P-values for the linear trends are 0.33 (landfalling hurricanes) and 0.61 (landfalling
- 660 major hurricanes) indicating that neither of these trends are significant.
- 661

664 Fig. 3. Normalized CONUS landfalling hurricane damage from 1900-2017. The dotted line

represents the linear trend in CONUS hurricane normalized damage during the period of record.

666 The p-value for the linear trend is 0.86 indicating that the trend is not significant.

- 670 Fig. 4. (a) Mean annual CONUS landfalling hurricanes by ENSO phase from 1900-2017 and (b)
- 671 mean annual CONUS landfalling major hurricanes by ENSO phase from 1900-2017.
- 672 Differences that are significant at the 5% level are plotted with diagonal hatching.

Fig. 5. (a) Median and (b) standard deviation of annual CONUS normalized hurricane damage by

- 675 ENSO phase. Differences in the median that are significant at the 5% level are plotted with
- 676 diagonal hatching. The * in panel a in the El Niño bar in the Florida and East Coast column
- 677 indicates that this difference is significant at the 5% level (the hatching would not display since
- 678 the value is so small).

(a)

- Fig. 6. (a) Mean annual CONUS landfalling hurricanes by AMO phase from 1900-2017 and (b)
- 682 mean annual CONUS landfalling major hurricanes by AMO phase from 1900-2017. Differences
- 683 that are significant at the 5% level are plotted with diagonal hatching.

686 Fig. 7. (a) Named storm formation location for all Gulf Coast landfalling hurricanes from 1900-

- 687 2017, and (b) named storm formation location for all Florida and East Coast landfalling
- 688 hurricanes from 1900-2017.

(b)

Fig. 8. (a) Median and (b) standard deviation of annual CONUS normalized hurricane damage by
AMO phase. Differences that are significant at the 5% level are plotted with diagonal hatching.
The * in panel a in the negative AMO bar in the Florida and East Coast column indicates that
this difference is significant at the 5% level (the hatching would not display since the value is so
small).

- 698 Fig. 9. (a) CONUS map showing six regions as defined in this manuscript and (b) CONUS
- 699 decadal population by region (1940-2016).

Fig. 10. CONUS decadal housing unit count (in millions) by region (1940-2016).

Fig. 11. Average size of a CONUS single-family home by region as defined by the US Census

708 Bureau (1973-2016).

Chained GDP Growth (1995-2016)

- Fig. 12. Real GDP growth by region (1995-2016).

716 dotted line represents the linear trend over the period. The p-value for the linear trend is <0.01

717 indicating that the trend is significant.

- Fig. 14. (a) Annual NFIP policies in place (1978-2017), (b) total insured value of NFIP coverage
- 721 (nominal values, 1978-2017) and (c) calendar year NFIP payouts from 1978-2016 (2017 \$).

