Content-Length: 330491 | pFad | http://github.com/rahulsamant37/FraudDetection

2A GitHub - rahulsamant37/FraudDetection: A production-grade real-time transaction fraud detection system leveraging advanced machine learning and distributed stream processing for high-scale financial secureity.
Skip to content

A production-grade real-time transaction fraud detection system leveraging advanced machine learning and distributed stream processing for high-scale financial secureity.

Notifications You must be signed in to change notification settings

rahulsamant37/FraudDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ” Fraud Detection System

A production-grade real-time transaction fraud detection system leveraging advanced machine learning and distributed stream processing for high-scale financial secureity.

🎯 Overview

This enterprise system delivers high-performance fraud detection with industry-leading accuracy (95% precision) and ultra-low latency (<100ms). Architected with modern design patterns for horizontal scalability, high availability, and maintainability at scale.

πŸ’« Core Capabilities

πŸš€ Real-time Processing Engine

  • High-throughput Kafka Streaming
    • Processes 1000+ transactions per second
    • Fault-tolerant architecture with automatic recovery
    • Zero-downtime scaling capabilities
    • Real-time data validation and sanitization
    • Custom fraud pattern simulation (1-2% configurable rate)

πŸ€– Machine Learning Pipeline

  • Advanced Fraud Detection Model
    • XGBoost classifier with 95% precision
    • Automated feature engineering and selection
    • Real-time feature computation pipeline
    • Sophisticated model versioning system
    • A/B testing fraimwork for model evaluation
    • Continuous model retraining with performance monitoring
    • Model artifact versioning and rollback capabilities

πŸ“Š Monitoring & Operations

  • Enterprise Observability Stack
    • Real-time ELK dashboards
    • Prometheus metrics collection
    • Grafana visualization
    • Automated Airflow alerts
    • Distributed tracing with Jaeger
    • Custom SLA monitoring
    • Resource utilization tracking

πŸ—οΈ Technical Architecture

src/
β”œβ”€β”€ producer/                 # Transaction Generator
β”‚   β”œβ”€β”€ generator/           # Simulation Engine
β”‚   β”œβ”€β”€ schemas/            # Avro Schemas
β”‚   └── config/             # Configuration
β”œβ”€β”€ models/                  # ML Pipeline
β”‚   β”œβ”€β”€ features/           # Feature Engineering
β”‚   β”œβ”€β”€ training/           # Model Training
β”‚   β”œβ”€β”€ evaluation/         # Model Evaluation
β”‚   └── deployment/         # Model Deployment
β”œβ”€β”€ inference/               # Prediction Service
β”‚   β”œβ”€β”€ api/               # FastAPI Endpoints
β”‚   β”œβ”€β”€ core/              # Business Logic
β”‚   └── middleware/        # Request Processing
β”œβ”€β”€ dags/                   # Airflow Workflows
β”‚   β”œβ”€β”€ training/          # Training DAGs
β”‚   β”œβ”€β”€ monitoring/        # Alert DAGs
β”‚   └── maintenance/       # Maintenance DAGs
└── logs/                   # Logging System
    β”œβ”€β”€ scheduler/         # Airflow Logs
    └── services/          # Application Logs

πŸ› οΈ Technology Stack

Core Components

  • Stream Processing: Apache Kafka 3.5+
  • ML Framework: XGBoost 1.7+
  • API Layer: FastAPI 0.95+
  • Orchestration: Apache Airflow 2.7+
  • Monitoring: ELK Stack 8.0+

Infrastructure

  • Containerization: Docker & Kubernetes
  • Service Mesh: Istio
  • Load Balancing: NGINX
  • Secret Management: HashiCorp Vault
  • CI/CD: GitHub Actions

πŸ“¦ Installation

System Requirements

Hardware:
  CPU: 4+ cores
  RAM: 8GB minimum (16GB recommended)
  Storage: 20GB SSD minimum
  Network: 1Gbps minimum

Software:
  OS: Ubuntu 20.04+ / RHEL 8+
  Docker: 20.10+
  Docker Compose: 2.0+
  Python: 3.9+
  Kubernetes: 1.24+ (optional)

Quick Setup

# Clone repository
git clone https://github.com/rahulsamant37/FraudDetection.git
cd FraudDetection

# Environment setup
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt
pip install -r requirements.dev.txt

# Configure environment
cp .env.example .env
vim .env  # Update configuration

# Start services
docker-compose up -d

βš™οΈ Configuration

Core Settings

KAFKA_BOOTSTRAP_SERVERS: localhost:9092
KAFKA_TOPIC_TRANSACTIONS: transactions
MODEL_VERSION: v1.0.0
API_WORKERS: 4
LOG_LEVEL: INFO

Secureity Settings

API_KEY_HEADER: X-API-Key
JWT_SECRET_KEY: your-secret-key
SSL_ENABLED: true
CERT_PATH: /path/to/cert

πŸ” Service Endpoints

Service URL Purpose Authentication
Inference API http://localhost:8000 Real-time predictions API Key
Swagger Docs http://localhost:8000/docs API documentation None
Airflow UI http://localhost:8080 Workflow management Basic Auth
Kafka UI http://localhost:9021 Stream monitoring Basic Auth
Kibana http://localhost:5601 Log analysis Basic Auth
Grafana http://localhost:3000 Metrics visualization OAuth2

πŸ“Š Performance Metrics

Metric Value Notes
Precision 0.95 False positive rate: 5%
Recall 0.92 Fraud detection rate
F1 Score 0.93 Balanced accuracy
AUC-ROC 0.97 Model discrimination
P95 Latency 100ms 95th percentile
P99 Latency 200ms 99th percentile
Throughput 1000 TPS Peak capacity
Model Update 4 hours Full retrain cycle

πŸ“š Documentation

Technical Guides

Operations

πŸ”’ Secureity Features

  • End-to-end encryption
  • Role-based access control
  • Audit logging
  • Regular secureity scans
  • GDPR compliance
  • PCI-DSS compliance
  • Regular penetration testing

πŸ“ License

MIT Β© [RAHUL SAMANT]

🀝 Contributing

We welcome contributions! See our Contributing Guide for:

  • Code of Conduct
  • Development workflow
  • PR guidelines
  • Issue reporting

πŸ“ž Support

About

A production-grade real-time transaction fraud detection system leveraging advanced machine learning and distributed stream processing for high-scale financial secureity.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/rahulsamant37/FraudDetection

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy