Description
Prerequisites
- Test that the bug appears on the current version of the main branch. Make sure to include the commit hash of the commit you checked out.
- Check that the issue hasn't already been reported, by checking the currently open issues.
- If there are steps to reproduce the problem, make sure to write them down below.
- If relevant, please include the ONNX files, which were created directly before and/or after the bug.
Quick summary
For models containing Resize
node of version > 10, if RoI
input is not used and left empty check_all_tensor_shapes_specified(...)
(
qonnx/src/qonnx/core/modelwrapper.py
Line 493 in 279f9c3
False
.
Steps to Reproduce
- Clone the qonnx repository
- Checkout the main branch, with commit hash: 279f9c3
- Run the following code:
import onnx
import numpy as np
from onnx import helper, TensorProto
from qonnx.core.modelwrapper import ModelWrapper
import qonnx.core.onnx_exec as oxe
# Define the input tensor (e.g., a 4D tensor with shape [N, C, H, W])
input_tensor = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 64, 64])
# Define the output tensor shape (e.g., resizing to [1, 3, 128, 128])
output_tensor = helper.make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 128, 128])
# Define the scale tensor (for upscaling by a factor of 2 along height and width)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
scales_initializer = helper.make_tensor("scales", TensorProto.FLOAT, [4], scales)
# Create the Resize node
resize_node = helper.make_node(
"Resize",
inputs=["input", "", "scales"], # Empty string for "roi" input as it's not used here
outputs=["output"],
mode="nearest"
)
# Create the graph with input, scales, and output
graph = helper.make_graph(
nodes=[resize_node],
name="ResizeGraph",
inputs=[input_tensor],
outputs=[output_tensor],
initializer=[scales_initializer]
)
# Define the model
model = helper.make_model(graph, opset_imports=[helper.make_operatorsetid("", 13)])
# Save the model
onnx.save(model, "resize_model.onnx")
qonnx_model = ModelWrapper('resize_model.onnx')
# Calling InferShapes() does not solve the issue
qonnx_model = qonnx_model.transform(InferShapes())
ishape = tuple(qonnx_model.get_tensor_shape(qonnx_model.graph.input[0].name))
X = np.random.uniform(low=0, high=1, size=np.prod(ishape)).reshape(ishape).astype(np.float32)
idict = {qonnx_model.graph.input[0].name: X}
y_qonnx = oxe.execute_onnx(qonnx_model, idict)[qonnx_model.graph.output[0].name]
Expected behavior
The empty input should not be considered since when RoI
is empty, scales
or other inputs should be considered to computed the output shape of the node.
Actual behavior
raise Exception("Found unspecified tensor shapes, try infer_shapes") Exception: Found unspecified tensor shapes, try infer_shapes
from
qonnx/src/qonnx/core/modelwrapper.py
Line 493 in 279f9c3
Possible fix
I fixed the issue by creating the following transformation (note, this is just to show how I fixed the issue, I don't think code should be added in the repository)
class FillEmptyRoI(Transformation):
"Fill empty RoI input tensor of Resize node if is empty to avoid issues during shape inference"
def apply(self, model):
graph_modified = False
for i, node in enumerate(model.graph.node):
if node.op_type == 'Resize':
# Assuming 'roi' is the second input
if len(node.input) > 2 and node.input[1] == '':
roi = onnx.numpy_helper.from_array(np.empty([0], dtype=np.float32), node.name + "_roi")
model.graph.initializer.append(roi)
roi_value_info = helper.make_tensor_value_info(node.name + "_roi", onnx.TensorProto.FLOAT, [0])
model.graph.value_info.append(roi_value_info)
inputs = [node.input[0], node.name + "_roi", node.input[2]]
mode_string = ''
for attr in model.graph.node[i].attribute:
if attr.name == 'mode':
mode_string = attr.s
new_node = onnx.helper.make_node(
"Resize",
coordinate_transformation_mode="asymmetric",
cubic_coeff_a=-0.75,
mode=mode_string,
nearest_mode="floor",
inputs=inputs,
outputs=node.output
)
model.graph.node.remove(node)
model.graph.node.insert(i, new_node)
graph_modified = True
return (model, graph_modified)
The following code works as expected
import onnx
import numpy as np
from onnx import helper, TensorProto
from qonnx.core.modelwrapper import ModelWrapper
import qonnx.core.onnx_exec as oxe
from qonnx.transformation.base import Transformation
from qonnx.transformation.infer_shapes import InferShapes
class FillEmptyRoI(Transformation):
"Fill empty RoI input tensor of Resize node if is empty to avoid issues during shape inference"
def apply(self, model):
graph_modified = False
for i, node in enumerate(model.graph.node):
if node.op_type == 'Resize':
# Assuming 'roi' is the second input
if len(node.input) > 2 and node.input[1] == '':
roi = onnx.numpy_helper.from_array(np.empty([0], dtype=np.float32), node.name + "_roi")
model.graph.initializer.append(roi)
roi_value_info = helper.make_tensor_value_info(node.name + "_roi", onnx.TensorProto.FLOAT, [0])
model.graph.value_info.append(roi_value_info)
inputs = [node.input[0], node.name + "_roi", node.input[2]]
mode_string = ''
for attr in model.graph.node[i].attribute:
if attr.name == 'mode':
mode_string = attr.s
new_node = onnx.helper.make_node(
"Resize",
coordinate_transformation_mode="asymmetric",
cubic_coeff_a=-0.75,
mode=mode_string,
nearest_mode="floor",
inputs=inputs,
outputs=node.output
)
model.graph.node.remove(node)
model.graph.node.insert(i, new_node)
graph_modified = True
return (model, graph_modified)
# Define the input tensor (e.g., a 4D tensor with shape [N, C, H, W])
input_tensor = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 64, 64])
# Define the output tensor shape (e.g., resizing to [1, 3, 128, 128])
output_tensor = helper.make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 128, 128])
# Define the scale tensor (for upscaling by a factor of 2 along height and width)
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
scales_initializer = helper.make_tensor("scales", TensorProto.FLOAT, [4], scales)
# Create the Resize node
resize_node = helper.make_node(
"Resize",
inputs=["input", "", "scales"], # Empty string for "roi" input as it's not used here
outputs=["output"],
mode="nearest"
)
# Create the graph with input, scales, and output
graph = helper.make_graph(
nodes=[resize_node],
name="ResizeGraph",
inputs=[input_tensor],
outputs=[output_tensor],
initializer=[scales_initializer]
)
# Define the model
model = helper.make_model(graph, opset_imports=[helper.make_operatorsetid("", 13)])
# Save the model
onnx.save(model, "resize_model.onnx")
qonnx_model = ModelWrapper('resize_model.onnx')
# Calling InferShapes() does not solve the issue
# qonnx_model = qonnx_model.transform(InferShapes())
qonnx_model = qonnx_model.transform(FillEmptyRoI())
ishape = tuple(qonnx_model.get_tensor_shape(qonnx_model.graph.input[0].name))
X = np.random.uniform(low=0, high=1, size=np.prod(ishape)).reshape(ishape).astype(np.float32)
idict = {qonnx_model.graph.input[0].name: X}
y_qonnx = oxe.execute_onnx(qonnx_model, idict)[qonnx_model.graph.output[0].name]
Note: if you want to ingest in hls4ml, I found useful to revert the model to the previous state, i.e. with RoI
input set to ''
.
I used this optimiser to implement this behaviour:
class EmptyFilledRoI(Transformation):
"Remove RoI tensor of Resize node added for shape inference"
def apply(self, model):
graph_modified = False
for node in model.graph.node:
if node.op_type == 'Resize':
# Assuming 'roi' is the second input
if len(node.input) > 2 and node.input[1] != '':
init_names = [x.name for x in model.graph.initializer]
i = init_names.index(node.input[1])
init_to_remove = model.graph.initializer[i]
model.graph.initializer.remove(init_to_remove)
node.input[1] = ''
graph_modified = True
return (model, graph_modified)